
Qian Shen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4608091/publications.pdf Version: 2024-02-01

OIAN SHEN

#	Article	IF	CITATIONS
1	<i><scp>A</scp>a<scp>ORA</scp></i> , a trichomeâ€specific <scp>AP</scp> 2/ <scp>ERF</scp> transcription factor of <i><scp>A</scp>rtemisia annua</i> , is a positive regulator in the artemisinin biosynthetic pathway and in disease resistance to <i><scp>B</scp>otrytis cinerea</i> . New Phytologist, 2013, 198, 1191-1202.	7.3	255
2	The jasmonateâ€responsive Aa <scp>MYC</scp> 2 transcription factor positively regulates artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2016, 210, 1269-1281.	7.3	230
3	The Genome of Artemisia annua Provides Insight into the Evolution of Asteraceae Family and Artemisinin Biosynthesis. Molecular Plant, 2018, 11, 776-788.	8.3	205
4	A Basic Leucine Zipper Transcription Factor, AabZIP1, Connects Abscisic Acid Signaling with Artemisinin Biosynthesis in Artemisia annua. Molecular Plant, 2015, 8, 163-175.	8.3	198
5	<scp>GLANDULAR TRICHOME</scp> â€ <scp>SPECIFIC WRKY</scp> 1 promotes artemisinin biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2017, 214, 304-316.	7.3	171
6	<scp>HOMEODOMAIN PROTEIN</scp> 1 is required for jasmonateâ€mediated glandular trichome initiation in <i>Artemisia annua</i> . New Phytologist, 2017, 213, 1145-1155.	7.3	170
7	A novel HDâ€ZIP IV/MIXTA complex promotes glandular trichome initiation and cuticle development in <i>Artemisia annua</i> . New Phytologist, 2018, 218, 567-578.	7.3	123
8	The roles of <i>Aa<scp>MIXTA</scp>1</i> in regulating the initiation of glandular trichomes and cuticle biosynthesis in <i>Artemisia annua</i> . New Phytologist, 2018, 217, 261-276.	7.3	119
9	Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in <i>Artemisia annua</i> . Science Advances, 2018, 4, eaas9357.	10.3	101
10	OSC2 and CYP716A14v2 Catalyze the Biosynthesis of Triterpenoids for the Cuticle of Aerial Organs of <i>Artemisia annua</i> . Plant Cell, 2015, 27, 286-301.	6.6	96
11	Transgenic approach to increase artemisinin content in Artemisia annua L Plant Cell Reports, 2014, 33, 605-615.	5.6	86
12	Enhancement of artemisinin content in tetraploid <i>Artemisia annua</i> plants by modulating the expression of genes in artemisinin biosynthetic pathway. Biotechnology and Applied Biochemistry, 2011, 58, 50-57.	3.1	72
13	Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (Asteraceae). Genetics and Molecular Research, 2012, 11, 3298-3309.	0.2	72
14	Branch Pathway Blocking in <i>Artemisia annua</i> is a Useful Method for Obtaining High Yield Artemisinin. Plant and Cell Physiology, 2016, 57, 588-602.	3.1	70
15	Light-Induced Artemisinin Biosynthesis Is Regulated by the bZIP Transcription Factor AaHY5 in <i>Artemisia annua</i> . Plant and Cell Physiology, 2019, 60, 1747-1760.	3.1	70
16	Transcriptome Analysis of Genes Associated with the Artemisinin Biosynthesis by Jasmonic Acid Treatment under the Light in Artemisia annua. Frontiers in Plant Science, 2017, 8, 971.	3.6	69
17	Parallel Transcriptional Regulation of Artemisinin and Flavonoid Biosynthesis. Trends in Plant Science, 2020, 25, 466-476.	8.8	52
18	AaPDR3, a PDR Transporter 3, Is Involved in Sesquiterpene β-Caryophyllene Transport in Artemisia annua. Frontiers in Plant Science, 2017, 8, 723.	3.6	50

QIAN SHEN

#	Article	IF	CITATIONS
19	Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L Science Bulletin, 2016, 61, 18-25.	9.0	48
20	CrERF5, an AP2/ERF Transcription Factor, Positively Regulates the Biosynthesis of Bisindole Alkaloids and Their Precursors in Catharanthus roseus. Frontiers in Plant Science, 2019, 10, 931.	3.6	47
21	Overexpression of <i>AaWRKY1</i> Leads to an Enhanced Content of Artemisinin in <i>Artemisia annua</i> . BioMed Research International, 2016, 2016, 1-9.	1.9	46
22	Interaction of bZIP transcription factor TGA6 with salicylic acid signaling modulates artemisinin biosynthesis in Artemisia annua. Journal of Experimental Botany, 2019, 70, 3969-3979.	4.8	46
23	Jasmonate―and abscisic acidâ€∎ctivated AaCSW1â€AaTCP15/AaORA transcriptional cascade promotes artemisinin biosynthesis in <i>Artemisia annua</i> . Plant Biotechnology Journal, 2021, 19, 1412-1428.	8.3	45
24	The WRKY transcription factor AaCSW2 promotes glandular trichome initiation in <i>Artemisia annua</i> . Journal of Experimental Botany, 2021, 72, 1691-1701.	4.8	41
25	An HDâ€ZIPâ€MYB complex regulates glandular secretory trichome initiation in <i>Artemisia annua</i> . New Phytologist, 2021, 231, 2050-2064.	7.3	41
26	ARTEMISININ BIOSYNTHESIS PROMOTING KINASE 1 positively regulates artemisinin biosynthesis through phosphorylating AabZIP1. Journal of Experimental Botany, 2018, 69, 1109-1123.	4.8	40
27	AaERF1 Positively Regulates the Resistance to Botrytis cinerea in Artemisia annua. PLoS ONE, 2013, 8, e57657.	2.5	38
28	AaABF3, an Abscisic Acid–Responsive Transcription Factor, Positively Regulates Artemisinin Biosynthesis in Artemisia annua. Frontiers in Plant Science, 2018, 9, 1777.	3.6	37
29	Molecular Cloning and Characterization of a Trichome-Specific Promoter of Artemisinic Aldehyde Δ11(13) Reductase (DBR2) in Artemisia annua. Plant Molecular Biology Reporter, 2014, 32, 82-91.	1.8	35
30	Promotion of artemisinin content in Artemisia annua by overexpression of multiple artemisinin biosynthetic pathway genes. Plant Cell, Tissue and Organ Culture, 2017, 129, 251-259.	2.3	35
31	The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L Plant Biotechnology Reports, 2013, 7, 287-295.	1.5	34
32	Promotion of artemisinin biosynthesis in transgenic Artemisia annua by overexpressing ADS, CYP71AV1 and CPR genes. Industrial Crops and Products, 2013, 49, 380-385.	5.2	33
33	Overexpression of Allene Oxide Cyclase Improves the Biosynthesis of Artemisinin in Artemisia annua L PLoS ONE, 2014, 9, e91741.	2.5	27
34	Jasmonic acidâ€responsive AabHLH1 positively regulates artemisinin biosynthesis in <i>Artemisia annua</i> . Biotechnology and Applied Biochemistry, 2019, 66, 369-375.	3.1	27
35	The YABBY Family Transcription Factor AaYABBY5 Directly Targets Cytochrome P450 Monooxygenase (CYP71AV1) and Double-Bond Reductase 2 (DBR2) Involved in Artemisinin Biosynthesis in Artemisia Annua. Frontiers in Plant Science, 2019, 10, 1084.	3.6	24
36	Transcriptional regulation of flavonoid biosynthesis in <i>Artemisia annua</i> by AaYABBY5. Horticulture Research, 2021, 8, 257.	6.3	24

QIAN SHEN

#	Article	IF	CITATIONS
37	Identification of Putative Artemisia annua ABCG Transporter Unigenes Related to Artemisinin Yield Following Expression Analysis in Different Plant Tissues and in Response to Methyl Jasmonate and Abscisic Acid Treatments. Plant Molecular Biology Reporter, 2012, 30, 838-847.	1.8	20
38	Characterization of the Promoter of Artemisia annua Amorpha-4,11-diene Synthase (ADS) Gene Using Homologous and Heterologous Expression as well as Deletion Analysis. Plant Molecular Biology Reporter, 2014, 32, 406-418.	1.8	20
39	Roles of MPBQ-MT in Promoting α/γ-Tocopherol Production and Photosynthesis under High Light in Lettuce. PLoS ONE, 2016, 11, e0148490.	2.5	19
40	AaEIN3 Mediates the Downregulation of Artemisinin Biosynthesis by Ethylene Signaling Through Promoting Leaf Senescence in Artemisia annua. Frontiers in Plant Science, 2018, 9, 413.	3.6	17
41	Glandular trichome-specific expression of alcohol dehydrogenase 1 (ADH1) using a promoter-GUS fusion in Artemisia annua L Plant Cell, Tissue and Organ Culture, 2017, 130, 61-72.	2.3	16
42	Characterization of a trichome-specific promoter of the aldehyde dehydrogenase 1 (ALDH1) gene in Artemisia annua. Plant Cell, Tissue and Organ Culture, 2016, 126, 469-480.	2.3	15
43	Characterization of the Jasmonate Biosynthetic Gene Allene Oxide Cyclase in Artemisia annua L., Source of the Antimalarial Drug Artemisinin. Plant Molecular Biology Reporter, 2011, 29, 489-497.	1.8	14
44	Type 2C Phosphatase 1 of <i>Artemisia annua</i> L. Is a Negative Regulator of ABA Signaling. BioMed Research International, 2014, 2014, 1-9.	1.9	14
45	The Transcription Factor Aabzip9 Positively Regulates the Biosynthesis of Artemisinin in Artemisia annua. Frontiers in Plant Science, 2019, 10, 1294.	3.6	14
46	Characterization of a novel ERF transcription factor in Artemisia annua and its induction kinetics after hormones and stress treatments. Molecular Biology Reports, 2012, 39, 9521-9527.	2.3	12
47	Basic Helix-Loop-Helix Transcription Factors AabHLH2 and AabHLH3 Function Antagonistically With AaMYC2 and Are Negative Regulators in Artemisinin Biosynthesis. Frontiers in Plant Science, 0, 13, .	3.6	8
48	Characterization of the first specific jasmonate biosynthetic pathway gene allene oxide synthase from Artemisia annua. Molecular Biology Reports, 2012, 39, 2267-2274.	2.3	7
49	Cloning and characterization of DELLA genes in Artemisia annua. Genetics and Molecular Research, 2015, 14, 10037-10049.	0.2	7
50	Comprehensive Map of the <i>Artemisia annua</i> Proteome and Quantification of Differential Protein Expression in Chemotypes Producing High versus Low Content of Artemisinin. Proteomics, 2020, 20, e1900310.	2.2	6
51	Tâ€shaped trichomeâ€specific expression of monoterpene synthase ADH2 using promoter–βâ€GUS fusion in transgenic <i>Artemisia annua</i> L Biotechnology and Applied Biochemistry, 2016, 63, 834-840.	3.1	5