List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4607789/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | "Novel insights into the roles of mast cells and basophilsâ€ŧ Joint Webinar of the Japanese and the<br>European Histamine Research Societies (JHRS/EHRS). Inflammation Research, 2022, , 1.                                                                  | 1.6 | 1         |
| 2  | Histamine receptors and COVID-19. Inflammation Research, 2021, 70, 67-75.                                                                                                                                                                                    | 1.6 | 34        |
| 3  | Case of Human Infestation with Dermanyssus gallinae (Poultry Red Mite) from Swallows<br>(Hirundinidae). Pathogens, 2021, 10, 299.                                                                                                                            | 1.2 | 16        |
| 4  | Pharmacokinetic profile data of glycopyrronium bromide 1% cream beyond 2 weeks are important.<br>British Journal of Dermatology, 2021, 185, 467-468.                                                                                                         | 1.4 | 4         |
| 5  | Immunopharmacology/Musculoskeletal System Pharmacology: Overview. , 2021, , .                                                                                                                                                                                |     | 0         |
| 6  | Histamine pharmacology: from Sir Henry Dale to the 21st century. British Journal of Pharmacology,<br>2020, 177, 469-489.                                                                                                                                     | 2.7 | 95        |
| 7  | Increased Basal Blood Histamine Levels in Patients with Self-Reported Hypersensitivity to<br>Non-Steroidal Anti-Inflammatory Drugs. International Archives of Allergy and Immunology, 2020, 181,<br>24-30.                                                   | 0.9 | 1         |
| 8  | Granulocyte-targeted therapies for airway diseases. Pharmacological Research, 2020, 157, 104881.                                                                                                                                                             | 3.1 | 14        |
| 9  | Challenges in the development and exploitation of new therapeutic options targeting the histaminergic system. British Journal of Pharmacology, 2020, 177, 467-468.                                                                                           | 2.7 | 0         |
| 10 | Detection of local allergic rhinitis in children with chronic, difficultâ€ŧoâ€ŧreat, nonâ€ellergic rhinitis<br>using multiple nasal provocation tests. Pediatric Allergy and Immunology, 2019, 30, 296-304.                                                  | 1.1 | 21        |
| 11 | l-Thyroxine induces thermotolerance in yeast. Cell Stress and Chaperones, 2019, 24, 469-473.                                                                                                                                                                 | 1.2 | 4         |
| 12 | Innovative Drugs for Allergies. , 2018, , 309-321.                                                                                                                                                                                                           |     | 0         |
| 13 | Avian mite dermatitis: Diagnostic challenges and unmet needs. Parasite Immunology, 2018, 40, e12539.                                                                                                                                                         | 0.7 | 13        |
| 14 | Tributyltin induces dose- and phase of growth-related alterations in eukaryotic cell proliferation and<br>carbohydrate levels. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018,<br>WCP2018, PO3-13-34.                          | 0.0 | 0         |
| 15 | Retrospective evaluation of non-steroidal anti-inflammatory drug-induced hypersensitivity reactions reported in a tertiary hospital allergy unit in Greece. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-4-41. | 0.0 | 0         |
| 16 | Histamine Quantification in Human Blood Samples. Methods in Pharmacology and Toxicology, 2017, ,<br>489-508.                                                                                                                                                 | 0.1 | 1         |
| 17 | Stratum Corneum Lipids and Water-Holding Capacity. , 2017, , 63-73.                                                                                                                                                                                          |     | 0         |
| 18 | Histamine type 1-receptor activation by low dose of histamine undermines human glomerular slit diaphragm integrity. Pharmacological Research, 2016, 114, 27-38.                                                                                              | 3.1 | 11        |

| #  | Article                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Editorial to the special issue on the challenge of histamine and histamine receptor pharmacology and therapeutics in the 21st century. Pharmacological Research, 2016, 114, 74.                      | 3.1 | 0         |
| 20 | Dimethyl sulphoxide modifies growth and senescence and induces the non-revertible petite phenotype in yeast. FEMS Yeast Research, 2016, 16, fow008.                                                  | 1.1 | 6         |
| 21 | The expanding role of immunopharmacology: <scp>IUPHAR</scp> Review 16. British Journal of Pharmacology, 2015, 172, 4217-4227.                                                                        | 2.7 | 23        |
| 22 | Comparable profiles of serum histamine and IgG4 levels in allergic beekeepers. Allergy: European<br>Journal of Allergy and Clinical Immunology, 2015, 70, 457-460.                                   | 2.7 | 14        |
| 23 | Histamine H3 and H4 Receptor Ligands Modify Vascular Histamine Levels in Normal and Arthritic Large<br>Blood Vessels In Vivo. Inflammation, 2015, 38, 949-958.                                       | 1.7 | 8         |
| 24 | Relationship between genome and epigenome - challenges and requirements for future research. BMC<br>Genomics, 2014, 15, 487.                                                                         | 1.2 | 24        |
| 25 | High baseline blood histamine levels and lack of cross-reactivity in a patient with ranitidine-induced anaphylaxis. Journal of Investigational Allergology and Clinical Immunology, 2014, 24, 361-3. | 0.6 | 5         |
| 26 | Protein backbone structure determination using RDC: An inverse kinematics approach with fast and exact solutions. International Journal of Quantum Chemistry, 2013, 113, 1095-1106.                  | 1.0 | 0         |
| 27 | A subset of histamine receptor ligands improve thermotolerance of the yeast <i>Saccharomyces cerevisiae</i> . Journal of Applied Microbiology, 2013, 114, 492-501.                                   | 1.4 | 4         |
| 28 | Seasonal influence on mitogen and cyclosporin responses of peripheral blood lymphocytes.<br>International Immunopharmacology, 2013, 16, 154-159.                                                     | 1.7 | 1         |
| 29 | Disease Activity Only Moderately Correlates with Quality of Life Impairment in Patients with Chronic<br>Spontaneous Urticaria. Dermatology, 2013, 226, 371-379.                                      | 0.9 | 34        |
| 30 | Editorial: Is histamine the missing link in chronic inflammation?. Journal of Leukocyte Biology, 2012, 92, 4-6.                                                                                      | 1.5 | 19        |
| 31 | Histamine Involvement in Visual Development and Adaptation. , 2012, 53, 7498.                                                                                                                        |     | 8         |
| 32 | Histamine in two component system-mediated bacterial signaling. Frontiers in Bioscience - Landmark,<br>2012, 17, 1108.                                                                               | 3.0 | 16        |
| 33 | Histamine Pharmacology and New CNS Drug Targets. CNS Neuroscience and Therapeutics, 2011, 17, 620-628.                                                                                               | 1.9 | 95        |
| 34 | Molybdate modulates mitogen and cyclosporin responses of human peripheral blood lymphocytes.<br>Journal of Trace Elements in Medicine and Biology, 2011, 25, 138-142.                                | 1.5 | 4         |
| 35 | Blood lymphocyte blastogenesis in patients with thyroid dysfunction: exÂvivo response to mitogen<br>activation and cyclosporinÂA. Inflammation Research, 2011, 60, 265-270.                          | 1.6 | 2         |
| 36 | Effect of Aminoguanidine on the Conjunctival Histamine and Nitrite Levels in Experimental<br>Conjunctivitis. Journal of Ocular Pharmacology and Therapeutics, 2011, 27, 137-142.                     | 0.6 | 3         |

| #  | Article                                                                                                                                                                                            | IF               | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|
| 37 | Histamine modulates the cellular stress response in yeast. Amino Acids, 2010, 38, 1219-1226.                                                                                                       | 1.2              | 11            |
| 38 | Signal transduction and adaptive regulation through bacterial two-component systems: the Escherichia coli AtoSC paradigm. Amino Acids, 2009, 37, 443-458.                                          | 1.2              | 32            |
| 39 | Systemic Challenge with Lipopolysaccharide Increases Histamine Levels in the Conjunctiva and<br>Cartilage, but not Hypothalamus of Sprague Dawley rats. Inflammation Research, 2009, 58, 49-50.    | 1.6              | 8             |
| 40 | Histamine Levels in Whole Peripheral Blood from Women with Ductal Breast Cancer: A Pilot Study.<br>Inflammation Research, 2009, 58, 73-74.                                                         | 1.6              | 6             |
| 41 | The histamine H4 receptor antagonist JNJ7777120 induces increases in the histamine content of the rat conjunctiva. Inflammation Research, 2009, 58, 285-291.                                       | 1.6              | 21            |
| 42 | Protective effect of salicylates against hydrogen peroxide stress in yeast. Journal of Applied<br>Microbiology, 2009, 106, 903-908.                                                                | 1.4              | 18            |
| 43 | The role of histamine H <sub>4</sub> receptor in immune and inflammatory disorders. British Journal of Pharmacology, 2009, 157, 24-33.                                                             | 2.7              | 261           |
| 44 | Histamine H <sub>3</sub> and H <sub>4</sub> receptors as novel drug targets. Expert Opinion on<br>Investigational Drugs, 2009, 18, 1519-1531.                                                      | 1.9              | 130           |
| 45 | Extracellular Ca2+ transients affect poly-(R)-3-hydroxybutyrate regulation by the AtoS-AtoC system in Escherichia coli. Biochemical Journal, 2009, 417, 667-672.                                   | 1.7              | 21            |
| 46 | The European Histamine Research Society (EHRS) Symposium for EPHAR 2008. Inflammation Research, 2008, 57, 5-6.                                                                                     | 1.6              | 1             |
| 47 | Effect of histamine on the signal transduction of the AtoS–AtoC two component system and involvement in poly-(R)-3-hydroxybutyrate biosynthesis in Escherichia coli. Amino Acids, 2008, 35, 45-52. | 1.2              | 21            |
| 48 | Chemotherapy: induction of stress responses. Endocrine-Related Cancer, 2006, 13, S115-S124.                                                                                                        | 1.6              | 80            |
| 49 | Time course of thyroxine on hypothalamic histamine in the rat. Inflammation Research, 2006, 55, S32-S33.                                                                                           | 1.6              | 3             |
| 50 | Effect of the Hsp90 modulators on the heat-shock response in eukaryotic cells. Folia Microbiologica, 2006, 51, 33-37.                                                                              | 1.1              | 5             |
| 51 | Nuclear Translocation During the Cross-Talk Between Cellular Stress, Cell Cycle and Anticancer<br>Agents. Current Medicinal Chemistry, 2006, 13, 1317-1320.                                        | 1.2              | 15            |
| 52 | The Mast Cell Pathway to Inflammation and Homeostasis: Pharmacolo- gical Insights.<br>Anti-Inflammatory and Anti-Allergy Agents in Medicinal Chemistry, 2006, 5, 323-334.                          | 1.1              | 12            |
| 53 | Editorial [Hot Topic: Trends in Inflammation - Leads in Immunopharmacology (Guest Editor: Ekaterini) Tj ETQq1                                                                                      | 1 0.78431<br>1.1 | .4 rgBT /Over |
| 54 | Circumvention of camptothecin-induced resistance during the adaptive cellular stress response.<br>Anticancer Research, 2006, 26, 421-5.                                                            | 0.5              | 3             |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Hypothalamic histamine levels in hyperthyroid, arthritic and C48/80-treated rats. Inflammation Research, 2005, 54, S30-S31.                                                                                | 1.6 | 3         |
| 56 | The heat shock response is dependent on the external environment and on rapid ionic balancing by pharmacological agents in Saccharomyces cerevisiae. Journal of Applied Microbiology, 2004, 96, 1271-1277. | 1.4 | 9         |
| 57 | Histamine and fluoxetine: common playground in the rat conjunctiva?. Inflammation Research, 2004, 53, S41-S42.                                                                                             | 1.6 | 4         |
| 58 | Leukotriene antagonists attenuate late phase nitric oxide production during the hypersensitivity response in the conjunctiva. Inflammation Research, 2004, 53, 373-6.                                      | 1.6 | 12        |
| 59 | Nadroparine inhibits the hypersensitivity response in the conjunctiva. European Journal of Pharmacology, 2003, 481, 119-124.                                                                               | 1.7 | 3         |
| 60 | Effects of the Flavonoid Pilloin Isolated from Marrubium cylleneum on Mitogen-Induced Lymphocyte<br>Transformation. Pharmaceutical Biology, 2002, 40, 245-248.                                             | 1.3 | 17        |
| 61 | Induction of morphological alterations by antineoplastic agents in yeast. Folia Microbiologica, 2002,<br>47, 157-160.                                                                                      | 1.1 | 4         |
| 62 | Cross-talk between Cellular Stress, Cell Cycle and Anticancer Agents: Mechanistic Aspects.<br>Anti-Cancer Agents in Medicinal Chemistry, 2002, 2, 553-566.                                                 | 7.0 | 18        |
| 63 | Heparin inhibits the effects of compound 48/80 and fluoxetine on conjunctival histamine content in vivo. Inflammation Research, 2002, 51, 7-8.                                                             | 1.6 | 2         |
| 64 | Anticancer drugs as inducers of thermotolerance in yeast. Folia Microbiologica, 2000, 45, 339-342.                                                                                                         | 1.1 | 11        |
| 65 | Synthesis and Biological Evaluation of Indole Containing Derivatives of Thiosemicarbazide and Their<br>Cyclic 1,2,4-Triazole and 1,3,4-Thiadiazole Analogs. Arzneimittelforschung, 2000, 50, 48-54.        | 0.5 | 36        |
| 66 | CHANGES IN HISTAMINE CONTENT FOLLOWING PHARMACOLOGICALLY-INDUCED MAST CELL DEGRANULATION IN THE RAT CONJUNCTIVA. Pharmacological Research, 2000, 41, 667-670.                                              | 3.1 | 23        |
| 67 | Effects of Chromatin Function Inhibitors on Yeast Whole Cells and Spheroplasts. ATLA Alternatives<br>To Laboratory Animals, 1999, 27, 951-956.                                                             | 0.7 | 1         |
| 68 | Molybdate induces thermotolerance in yeast. Letters in Applied Microbiology, 1999, 29, 77-80.                                                                                                              | 1.0 | 13        |
| 69 | Antiphage activity in extracts of plants growing in Greece. Phytomedicine, 1997, 4, 117-124.                                                                                                               | 2.3 | 12        |
| 70 | Effect of calcium channel blockers on the action of various antitumour agents in the yeast<br>Saccharomyces cerevisiae. Journal of Applied Bacteriology, 1996, 81, 481-485.                                | 1.1 | 9         |
| 71 | Response of <i>Saccharomyces cerevisiae</i> strains to antineoplastic agents. Journal of Applied<br>Bacteriology, 1995, 79, 379-383.                                                                       | 1.1 | 10        |
| 72 | Involvement of potassium ions in the action of various antineoplastic drugs on the growth of Saccharomyces cerevisiae. Letters in Applied Microbiology, 1993, 16, 251-253.                                 | 1.0 | 6         |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | lonic, neuronal and endocrine influences on the proopiomelanocortin system of the hypothalamus.<br>Life Sciences, 1990, 46, 81-90.                                                                                                                 | 2.0 | 12        |
| 74 | D2-but not D1-dopamine receptors are involved in the inhibitory control of<br>alpha-melanocyte-stimulating hormone release from the rat hypothalamus. Experimental Brain<br>Research, 1989, 74, 645-8.                                             | 0.7 | 12        |
| 75 | Glutamergic Action on Alpha-Melanocyte-Stimulating Hormone Release from the Rat Hypothalamus.<br>Journal of Neuroendocrinology, 1989, 1, 393-395.                                                                                                  | 1.2 | 6         |
| 76 | Regulation of α-melanocyte-stimulating hormone release from superfused slices of rat hypothalamus<br>by serotonin and the interaction of serotonin with the dopaminergic system inhibiting peptide release.<br>Brain Research, 1989, 503, 225-228. | 1.1 | 22        |
| 77 | Dopaminergic inhibition of α-melanocyte-stimulating hormone release from superfused slices of the rat hypothalamus. Brain Research, 1988, 457, 379-382.                                                                                            | 1.1 | 12        |
| 78 | Ion and ion channel involvement in α-melanocyte-stimulating hormone secretion from superfused slices of rat hypothalamus. Neuroscience Letters, 1988, 95, 318-322.                                                                                 | 1.0 | 6         |
| 79 | Altered calmodulin activity in buccal epithelial cells from cystic fribrosis patients. Clinica Chimica<br>Acta, 1987, 170, 135-142.                                                                                                                | 0.5 | 3         |