Avner Priel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4607692/publications.pdf Version: 2024-02-01

AVNED DDIEL

#	Article	IF	CITATIONS
1	A vectorial tree distance measure. Scientific Reports, 2022, 12, 5256.	3.3	1
2	A single nucleotide variant of human PARP1 determines response to PARP inhibitors. Npj Precision Oncology, 2020, 4, 10.	5.4	3
3	Econophysics of a ranked demand and supply resource allocation problem. Physica A: Statistical Mechanics and Its Applications, 2018, 490, 745-753.	2.6	0
4	Network Representation of T-Cell Repertoire— A Novel Tool to Analyze Immune Response to Cancer Formation. Frontiers in Immunology, 2018, 9, 2913.	4.8	15
5	Channel Capacity and Rate Distortion in Amino Acid Networks. , 2017, , 187-202.		0
6	Metabolic control of type 1 regulatory T cell differentiation by AHR and HIF1-α. Nature Medicine, 2015, 21, 638-646.	30.7	374
7	On the power of weak measurements in separating quantum states. Quantum Studies: Mathematics and Foundations, 2015, 2, 37-49.	0.9	3
8	Keeping time: Could quantum beating in microtubules be the basis for the neural synchrony related to consciousness?. Journal of Integrative Neuroscience, 2014, 13, 293-311.	1.7	30
9	Reversibility and efficiency in coding protein information. Journal of Theoretical Biology, 2010, 267, 519-525.	1.7	0
10	Neural cytoskeleton capabilities for learning and memory. Journal of Biological Physics, 2010, 36, 3-21.	1.5	62
11	MICROTUBULE IONIC CONDUCTION AND ITS IMPLICATIONS FOR HIGHER COGNITIVE FUNCTIONS. Journal of Integrative Neuroscience, 2010, 09, 103-122.	1.7	38
12	Nanoneuroscience. Biological and Medical Physics Series, 2010, , .	0.4	17
13	Model of ionic currents through microtubule nanopores and the lumen. Physical Review E, 2010, 81, 051912.	2.1	39
14	Nanotechnology, Nanostructure, and Nervous System Disorders. Biological and Medical Physics Series, 2009, , 177-226.	0.4	2
15	The Cytoskeleton as a Nanoscale Information Processor: Electrical Properties and an Actin-Microtubule Network Model. Biological and Medical Physics Series, 2009, , 85-127.	0.4	4
16	Nanocarriers and Intracellular Transport: Moving Along the Cytoskeletal Matrix. Biological and Medical Physics Series, 2009, , 129-176.	0.4	1
17	Novel Modes of Neural Computation: From Nanowires to Mind. Biological and Medical Physics Series, 2009, , 227-273.	0.4	0
18	Introducing Nanoneuroscience as a Distinct Discipline. Biological and Medical Physics Series, 2009, , 1-34.	0.4	0

Avner Priel

#	Article	IF	CITATIONS
19	Nanoscale Components of Neurons: From Biomolecules to Nanodevices. Biological and Medical Physics Series, 2009, , 35-84.	0.4	0
20	Effect of Calcium on Electrical Energy Transfer by Microtubules. Journal of Biological Physics, 2008, 34, 475-485.	1.5	25
21	A nonlinear cable-like model of amplified ionic wave propagation along microtubules. Europhysics Letters, 2008, 83, 68004.	2.0	37
22	A Biopolymer Transistor: Electrical Amplification by Microtubules. Biophysical Journal, 2006, 90, 4639-4643.	0.5	115
23	Mean first passage time in periodic attractors. Journal of Physics A, 2006, 39, 8603-8612.	1.6	1
24	lonic Waves Propagation Along the Dendritic Cytoskeleton as a Signaling Mechanism. Advances in Molecular and Cell Biology, 2006, 37, 163-180.	0.1	8
25	The Dendritic Cytoskeleton as a Computational Device: An Hypothesis. , 2006, , 293-325.		15
26	Transitions in microtubule C-termini conformations as a possible dendritic signaling phenomenon. European Biophysics Journal, 2005, 35, 40-52.	2.2	52
27	Electrodynamic Signaling by the Dendritic Cytoskeleton: Toward an Intracellular Information Processing Model. Electromagnetic Biology and Medicine, 2005, 24, 221-231.	1.4	19
28	Time Series Generation by Recurrent Neural Networks. Annals of Mathematics and Artificial Intelligence, 2003, 39, 315-332.	1.3	8
29	Robust chaos generation by a perceptron. Europhysics Letters, 2000, 51, 230-236.	2.0	15
30	Long-term properties of time series generated by a perceptron with various transfer functions. Physical Review E, 1999, 59, 3368-3375.	2.1	12
31	Noisy time series generation by feed-forward networks. Journal of Physics A, 1998, 31, 1189-1209.	1.6	5
32	Analytical Study of Time Series Generation by Feed-Forward Networks. Physical Review Letters, 1995, 75, 2614-2617.	7.8	23
33	Computational capabilities of restricted two-layered perceptrons. Physical Review E, 1994, 50, 577-595.	2.1	19