
SÅ,awomir Jaworski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4607357/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nanocomposites of Graphene Oxide—Silver Nanoparticles for Enhanced Antibacterial Activity: Mechanism of Action and Medical Textiles Coating. Materials, 2022, 15, 3122.	1.3	16
2	Graphene oxide nanofilm and chicken embryo extract decrease the invasiveness of HepG2 liver cancer cells. Cancer Nanotechnology, 2021, 12, .	1.9	8
3	Reduced Graphene Oxides Modulate the Expression of Cell Receptors and Voltage-Dependent Ion Channel Genes of Glioblastoma Multiforme. International Journal of Molecular Sciences, 2021, 22, 515.	1.8	8
4	Effect of <i>Elaeagnus umbellata</i> (Thunb.) fruit extract on H ₂ O ₂ -induced oxidative and inflammatory responses in normal fibroblast cells. PeerJ, 2021, 9, e10760.	0.9	6
5	Calcium Carbonate Nanoparticles—Toxicity and Effect of In Ovo Inoculation on Chicken Embryo Development, Broiler Performance and Bone Status. Animals, 2021, 11, 932.	1.0	5
6	Silver and Copper Nanoparticles Inhibit Biofilm Formation by Mastitis Pathogens. Animals, 2021, 11, 1884.	1.0	28
7	Comparison of the Toxicity of Pristine Graphene and Graphene Oxide, Using Four Biological Models. Materials, 2021, 14, 4250.	1.3	13
8	Diamond Nanofilm Normalizes Proliferation and Metabolism in Liver Cancer Cells. Nanotechnology, Science and Applications, 2021, Volume 14, 115-137.	4.6	3
9	MicroRNA Delivery by Graphene-Based Complexes into Glioblastoma Cells. Molecules, 2021, 26, 5804.	1.7	8
10	Alginate-based tissue-specific bioinks for multi-material 3D-bioprinting of pancreatic islets and blood vessels: A step towards vascularized pancreas grafts. Bioprinting, 2021, 24, e00163.	2.9	25
11	Use of Selected Carbon Nanoparticles as Melittin Carriers for MCF-7 and MDA-MB-231 Human Breast Cancer Cells. Materials, 2020, 13, 90.	1.3	28
12	Effect of <i>in ovo</i> application of hydroxyapatite nanoparticles on chicken embryo development, oxidative status and bone characteristics. Archives of Animal Nutrition, 2020, 74, 343-361.	0.9	4
13	Effect of Graphene Family Materials on Multiple Myeloma and Non-Hodgkin's Lymphoma Cell Lines. Materials, 2020, 13, 3420.	1.3	3
14	Graphene oxide nanofilm and the addition of l-glutamine can promote development of embryonic muscle cells. Journal of Nanobiotechnology, 2020, 18, 76.	4.2	10
15	Graphene Oxide Scaffold Stimulates Differentiation and Proangiogenic Activities of Myogenic Progenitor Cells. International Journal of Molecular Sciences, 2020, 21, 4173.	1.8	14
16	The Interaction of Metal Nanoparticles (Copper, Silver, Platinum, and Gold) with Cell Line HS-5. Folia Biologica, 2020, 68, 89-96.	0.1	0
17	<p>Mechano-signalling, induced by fullerene C₆₀ nanofilms, arrests the cell cycle in the G2/M phase and decreases proliferation of liver cancer cells</p> . International Journal of Nanomedicine, 2019, Volume 14, 6197-6215.	3.3	24
18	Silver and Copper Nanoparticles—An Alternative in Future Mastitis Treatment and Prevention?. International Journal of Molecular Sciences, 2019, 20, 1672.	1.8	51

#	Article	IF	CITATIONS
19	Diamond Nanoparticles Downregulate Expression of CycD and CycE in Glioma Cells. Molecules, 2019, 24, 1549.	1.7	6
20	Nanocomplexes of Graphene Oxide and Platinum Nanoparticles against Colorectal Cancer Colo205, HT-29, HTC-116, SW480, Liver Cancer HepG2, Human Breast Cancer MCF-7, and Adenocarcinoma LNCaP and Human Cervical Hela B Cell Lines. Materials, 2019, 12, 909.	1.3	24
21	Degradation of Mitochondria and Oxidative Stress as the Main Mechanism of Toxicity of Pristine Graphene on U87 Glioblastoma Cells and Tumors and HS-5 Cells. International Journal of Molecular Sciences, 2019, 20, 650.	1.8	38
22	Graphene Oxide in a Composite with Silver Nanoparticles Reduces the Fibroblast and Endothelial Cell Cytotoxicity of an Antibacterial Nanoplatform. Nanoscale Research Letters, 2019, 14, 320.	3.1	36
23	Influence of Selected Carbon Nanostructures on the CYP2C9 Enzyme of the P450 Cytochrome. Materials, 2019, 12, 4149.	1.3	3
24	Graphene oxide down-regulates genes of the oxidative phosphorylation complexes in a glioblastoma. BMC Molecular Biology, 2019, 20, 2.	3.0	25
25	Effect of different levels of copper nanoparticles and copper sulphate on performance, metabolism and blood biochemical profiles in broiler chicken. Journal of Animal Physiology and Animal Nutrition, 2018, 102, e364-e373.	1.0	39
26	Nanostructures of diamond, graphene oxide and graphite inhibit CYP1A2, CYP2D6 and CYP3A4 enzymes and downregulate their genes in liver cells. International Journal of Nanomedicine, 2018, Volume 13, 8561-8575.	3.3	16
27	Effects of Reduced Graphene Oxides on Apoptosis and Cell Cycle of Glioblastoma Multiforme. International Journal of Molecular Sciences, 2018, 19, 3939.	1.8	29
28	NF-κB-related decrease of glioma angiogenic potential by graphite nanoparticles and graphene oxide nanoplatelets. Scientific Reports, 2018, 8, 14733.	1.6	24
29	Graphene Oxide-Based Nanocomposites Decorated with Silver Nanoparticles as an Antibacterial Agent. Nanoscale Research Letters, 2018, 13, 116.	3.1	129
30	Effect of copper nanoparticles on the mineral content of tissues and droppings, and growth of chickens. Archives of Animal Nutrition, 2018, 72, 396-406.	0.9	19
31	Influence of silver and copper nanoparticles on Staphylococcus aureus biofilm formation. Annals of Warsaw University of Life Sciences - SGGW - Animal Science, 2018, 57, 193-201.	0.1	1
32	Interaction of different forms of graphene with chicken embryo red blood cells. Environmental Science and Pollution Research, 2017, 24, 21671-21679.	2.7	22
33	Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Archives of Medical Science, 2017, 6, 1322-1334.	0.4	40
34	The Method of Coating Fe3O4 with Carbon Nanoparticles to Modify Biological Properties of Oxide Measured in Vitro. Journal of AOAC INTERNATIONAL, 2017, 100, 905-915.	0.7	3
35	Diamond, graphite, and graphene oxide nanoparticles decrease migration and invasiveness in glioblastoma cell lines by impairing extracellular adhesion. International Journal of Nanomedicine, 2017, Volume 12, 7241-7254.	3.3	33
36	Assessment of the proliferation status of glioblastoma cell and tumour tissue after nanoplatinum treatment. PLoS ONE, 2017, 12, e0178277.	1.1	22

#	Article	IF	CITATIONS
37	Analysis of the cytotoxicity of hierarchical nanoporous graphenic carbon against human glioblastoma grade IV cells. International Journal of Nanomedicine, 2017, Volume 12, 3839-3849.	3.3	5
38	Carbon nanoparticles as transporters of melittin to glioma grade IV U87 cells in in vitro model. Annals of Warsaw University of Life Sciences - SGGW - Animal Science, 2017, 56, 23-32.	0.1	2
39	Interaction of hierarchical nanoporous carbons(HNCs) with chicken embryo red blood cells (RBC). Annals of Warsaw University of Life Sciences - SGGW - Animal Science, 2017, 56, 37-42.	0.1	2
40	Influence of melittin on viability and integrity of cell membrane on grade IV glioma Annals of Warsaw University of Life Sciences - SGGW - Animal Science, 2017, 56, 43-51.	0.1	1
41	Diamond Nanoparticles Modify Curcumin Activity: In Vitro Studies on Cancer and Normal Cells and In Ovo Studies on Chicken Embryo Model. PLoS ONE, 2016, 11, e0164637.	1.1	28
42	<i>In ovo</i> administration of copper nanoparticles and copper sulfate positively influences chicken performance. Journal of the Science of Food and Agriculture, 2016, 96, 3058-3062.	1.7	44
43	Toxicity of different forms of graphene in a chicken embryo model. Environmental Science and Pollution Research, 2016, 23, 19940-19948.	2.7	20
44	Effect of copper nanoparticles and copper sulphate on metabolic rate and development of broiler embryos. Animal Feed Science and Technology, 2016, 220, 151-158.	1.1	34
45	Graphene Functionalized with Arginine Decreases the Development of Glioblastoma Multiforme Tumor in a Gene-Dependent Manner. International Journal of Molecular Sciences, 2015, 16, 25214-25233.	1.8	36
46	Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats. PLoS ONE, 2015, 10, e0144821.	1.1	45
47	In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma. International Journal of Nanomedicine, 2015, 10, 1585.	3.3	87
48	Interaction of graphene family materials with Listeria monocytogenes and Salmonella enterica. Nanoscale Research Letters, 2015, 10, 23.	3.1	75
49	Nanoparticles of Copper Stimulate Angiogenesis at Systemic and Molecular Level. International Journal of Molecular Sciences, 2015, 16, 4838-4849.	1.8	87
50	Analysis of the Cytotoxicity of Carbon-Based Nanoparticles, Diamond and Graphite, in Human Glioblastoma and Hepatoma Cell Lines. PLoS ONE, 2015, 10, e0122579.	1.1	53
51	Effect of silver nanoparticles and hydroxyproline, administered <i>in ovo</i> , on the development of blood vessels and cartilage collagen structure in chicken embryos. Archives of Animal Nutrition, 2015, 69, 57-68.	0.9	25
52	Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats. Nanoscale Research Letters, 2015, 10, 398.	3.1	81
53	Toxicity of pristine graphene in experiments in a chicken embryo model. International Journal of Nanomedicine, 2014, 9, 3913.	3.3	46
54	Nanoparticles containing allotropes of carbon have genotoxic effects on glioblastomamultiforme cells. International Journal of Nanomedicine, 2014, 9, 2409.	3.3	46

SÅ, AWOMIR JAWORSKI

#	Article	IF	CITATIONS
55	Structural damage of chicken red blood cells exposed to platinum nanoparticles and cisplatin. Nanoscale Research Letters, 2014, 9, 257.	3.1	28
56	Influence of nanoparticles of platinum on chicken embryo development and brain morphology. Nanoscale Research Letters, 2013, 8, 251.	3.1	55
57	Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Research Letters, 2013, 8, 195.	3.1	61
58	Nano-nutrition of chicken embryos. The effect of silver nanoparticles and ATP on expression of chosen genes involved in myogenesis. Archives of Animal Nutrition, 2013, 67, 347-355.	0.9	26
59	Nano-Nutrition of Chicken Embryos. The Effect of in Ovo Administration of Diamond Nanoparticles and l-Glutamine on Molecular Responses in Chicken Embryo Pectoral Muscles. International Journal of Molecular Sciences, 2013, 14, 23033-23044.	1.8	32
60	In vitro evaluation of the effects of graphene platelets on glioblastoma multiforme cells. International Journal of Nanomedicine, 2013, 8, 413.	3.3	104
61	Comparison of tumour morphology and structure from U87 and U118 glioma cells cultured on chicken embryo chorioallantoic membrane. Bulletin of the Veterinary Institute in Pulawy = Biuletyn Instytutu Weterynarii W Pulawach, 2013, 57, 593-598.	0.4	8
62	Carbon nanoparticles downregulate expression of basic fibroblast growth factor in the heart during embryogenesis. International Journal of Nanomedicine, 2013, 8, 3427.	3.3	34