
Xiao-Ping Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4607329/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thymic Epithelial Cell-Derived IL-15 and IL-15 Receptor α Chain Foster Local Environment for Type 1 Innate Like T Cell Development. Frontiers in Immunology, 2021, 12, 623280.	2.2	8
2	Differential controls of MAIT cell effector polarization by mTORC1/mTORC2 via integrating cytokine and costimulatory signals. Nature Communications, 2021, 12, 2029.	5.8	21
3	Regulation of Intrinsic and Bystander T Follicular Helper Cell Differentiation and Autoimmunity by Tsc1. Frontiers in Immunology, 2021, 12, 620437.	2.2	3
4	Development and Evaluation of a Novel Mouse Model of Asphyxial Cardiac Arrest Revealed Severely Impaired Lymphopoiesis After Resuscitation. Journal of the American Heart Association, 2021, 10, e019142.	1.6	11
5	Loss of Diacylglycerol Kinase α Enhances Macrophage Responsiveness. Frontiers in Immunology, 2021, 12, 722469.	2.2	2
6	Graded diacylglycerol kinases α and ζ activities ensure mucosalâ€associated invariant Tâ€cell development in mice. European Journal of Immunology, 2020, 50, 192-204.	1.6	5
7	MxA suppresses TAK1-IKKα/β-NF-κB mediated inflammatory cytokine production to facilitate Mycobacterium tuberculosis infection. Journal of Infection, 2020, 81, 231-241.	1.7	12
8	Negative control of diacylglycerol kinase ζâ€mediated inhibition of T cell receptor signaling by nuclear sequestration in mice. European Journal of Immunology, 2020, 50, 1729-1745.	1.6	1
9	Efficient CD4Cre-Mediated Conditional KRas Expression in Alveolar Macrophages and Alveolar Epithelial Cells Causes Fatal Hyperproliferative Pneumonitis. Journal of Immunology, 2019, 203, 1208-1217.	0.4	2
10	<scp>NLRC</scp> 3 expression in dendritic cells attenuates <scp>CD</scp> 4 ⁺ T cell response and autoimmunity. EMBO Journal, 2019, 38, e101397.	3.5	35
11	Circulating Mucosal-Associated Invariant T Cells in a Large Cohort of Healthy Chinese Individuals From Newborn to Elderly. Frontiers in Immunology, 2019, 10, 260.	2.2	51
12	Differential Control of iNKT Cell Effector Lineage Differentiation by the Forkhead Box Protein O1 (Foxo1) Transcription Factor. Frontiers in Immunology, 2019, 10, 2710.	2.2	6
13	DGK α and ζ Activities Control TH1 and TH17 Cell Differentiation. Frontiers in Immunology, 2019, 10, 3048.	2.2	6
14	Thymic Epithelial Cells Contribute to Thymopoiesis and T Cell Development. Frontiers in Immunology, 2019, 10, 3099.	2.2	62
15	Deficiency of Mucosal-Associated Invariant T Cells in TCRJα18 Germline Knockout Mice. ImmunoHorizons, 2019, 3, 203-207.	0.8	14
16	Vitamin B1 Helps to Limit Mycobacterium tuberculosis Growth via Regulating Innate Immunity in a Peroxisome Proliferator-Activated Receptor-Î ³ -Dependent Manner. Frontiers in Immunology, 2018, 9, 1778.	2.2	27
17	Vitamin B5 Reduces Bacterial Growth via Regulating Innate Immunity and Adaptive Immunity in Mice Infected with Mycobacterium tuberculosis. Frontiers in Immunology, 2018, 9, 365.	2.2	54
18	NLRC3 negatively regulates CD4+ T cells and impacts protective immunity during Mycobacterium tuberculosis infection. PLoS Pathogens, 2018, 14, e1007266.	2.1	34

XIAO-PING ZHONG

#	Article	IF	CITATIONS
19	IL-17 Production of Neutrophils Enhances Antibacteria Ability but Promotes Arthritis Development During Mycobacterium tuberculosis Infection. EBioMedicine, 2017, 23, 88-99.	2.7	60
20	Essential Role of mTORC1 in Self-Renewal of Murine Alveolar Macrophages. Journal of Immunology, 2017, 198, 492-504.	0.4	41
21	Vibrio vulnificus induces mTOR activation and inflammatory responses in macrophages. PLoS ONE, 2017, 12, e0181454.	1.1	12
22	Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Frontiers in Cell and Developmental Biology, 2016, 4, 130.	1.8	22
23	mTORC1 in Thymic Epithelial Cells Is Critical for Thymopoiesis, T-Cell Generation, and Temporal Control of Î ³ δT17 Development and TCRÎ ³ δ Recombination. PLoS Biology, 2016, 14, e1002370.	2.6	23
24	Unexpected positive control of NFκB and miR-155 by DGKα and ζ ensures effector and memory CD8+ T cell differentiation. Oncotarget, 2016, 7, 33744-33764.	0.8	25
25	Sustained activation of mTORC1 in macrophages increases AMPKα-dependent autophagy to maintain cellular homeostasis. BMC Biochemistry, 2016, 17, 14.	4.4	20
26	Dominant Splice Site Mutations in PIK3R1 Cause Hyper IgM Syndrome, Lymphadenopathy and Short Stature. Journal of Clinical Immunology, 2016, 36, 462-471.	2.0	55
27	mTOR is critical for intestinal T-cell homeostasis and resistance to Citrobacter rodentium. Scientific Reports, 2016, 6, 34939.	1.6	4
28	mTORC2 in Thymic Epithelial Cells Controls Thymopoiesis and T Cell Development. Journal of Immunology, 2016, 197, 141-150.	0.4	13
29	Intercellular Protein Transfer from Thymocytes to Thymic Epithelial Cells. PLoS ONE, 2016, 11, e0152641.	1.1	5
30	Critical roles of mTOR Complex 1 and 2 for T follicular helper cell differentiation and germinal center responses. ELife, 2016, 5, .	2.8	89
31	mTOR and its tight regulation for iNKT cell development and effector function. Molecular Immunology, 2015, 68, 536-545.	1.0	18
32	TSC1 Promotes B Cell Maturation but Is Dispensable for Germinal Center Formation. PLoS ONE, 2015, 10, e0127527.	1.1	21
33	Tuberous Sclerosis 1 Promotes Invariant NKT Cell Anergy and Inhibits Invariant NKT Cell–Mediated Antitumor Immunity. Journal of Immunology, 2014, 192, 2643-2650.	0.4	25
34	IKKα negatively regulates ASC-dependent inflammasome activation. Nature Communications, 2014, 5, 4977.	5.8	96
35	Mechanistic target of rapamycin complex 1 is critical for invariant natural killer T-cell development and effector function. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E776-83.	3.3	56
36	Role of Tumor Suppressor TSC1 in Regulating Antigen-Specific Primary and Memory CD8 T Cell Responses to Bacterial Infection. Infection and Immunity, 2014, 82, 3045-3057.	1.0	17

XIAO-PING ZHONG

#	Article	IF	CITATIONS
37	A nonsense mutation in IKBKB causes combined immunodeficiency. Blood, 2014, 124, 2046-2050.	0.6	59
38	iNKT cells require TSC1 for terminal maturation and effector lineage fate decisions. Journal of Clinical Investigation, 2014, 124, 1685-1698.	3.9	54
39	Critical Role of the Tumor Suppressor Tuberous Sclerosis Complex 1 in Dendritic Cell Activation of CD4 T Cells by Promoting MHC Class II Expression via IRF4 and CIITA. Journal of Immunology, 2013, 191, 699-707.	0.4	45
40	Diacylglycerol Kinase ζ Limits B Cell Antigen Receptor–Dependent Activation of ERK Signaling to Inhibit Early Antibody Responses. Science Signaling, 2013, 6, ra91.	1.6	27
41	Regulation of Lipid Signaling by Diacylglycerol Kinases during T Cell Development and Function. Frontiers in Immunology, 2013, 4, 178.	2.2	49
42	T Cell Co-inhibitory Receptors-Functions and Signalling Mechanisms. Journal of Clinical & Cellular Immunology, 2013, 01, 5.	1.5	36
43	Diacylglycerol Kinase Zeta Positively Controls the Development of iNKT-17 Cells. PLoS ONE, 2013, 8, e75202.	1.1	4
44	MicroRNA-34a Enhances T Cell Activation by Targeting Diacylglycerol Kinase ζ. PLoS ONE, 2013, 8, e77983.	1.1	42
45	FoxO-Dependent Regulation of Diacylglycerol Kinase $\hat{I}\pm$ Gene Expression. Molecular and Cellular Biology, 2012, 32, 4168-4180.	1.1	32
46	The Role of Tuberous Sclerosis Complex 1 in Regulating Innate Immunity. Journal of Immunology, 2012, 188, 3658-3666.	0.4	69
47	Differential Regulation of Primary and Memory CD8 T Cell Immune Responses by Diacylglycerol Kinases. Journal of Immunology, 2012, 188, 2111-2117.	0.4	38
48	Differential Requirement of RasGRP1 for γδT Cell Development and Activation. Journal of Immunology, 2012, 189, 61-71.	0.4	24
49	Regulation of mast cell survival and function by tuberous sclerosis complex 1. Blood, 2012, 119, 3306-3314.	0.6	37
50	Tumor suppressor TSC1 is critical for T-cell anergy. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 14152-14157.	3.3	58
51	The Role and Regulation of mTOR in T-Lymphocyte Function. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 173-181.	1.0	20
52	Negative regulation of mTOR activation by diacylglycerol kinases. Blood, 2011, 117, 4022-4031.	0.6	87
53	Receptor signaling in immune cell development and function. Immunologic Research, 2011, 49, 109-123.	1.3	28
54	Regulation of Tâ€cell survival and mitochondrial homeostasis by TSC1. European Journal of Immunology, 2011, 41, 3361-3370.	1.6	78

XIAO-PING ZHONG

#	Article	IF	CITATIONS
55	Critical Roles of RasGRP1 for Invariant NKT Cell Development. Journal of Immunology, 2011, 187, 4467-4473.	0.4	45
56	SAP-Mediated Inhibition of Diacylglycerol Kinase α Regulates TCR-Induced Diacylglycerol Signaling. Journal of Immunology, 2011, 187, 5941-5951.	0.4	43
57	Tight Regulation of Diacylglycerol-Mediated Signaling Is Critical for Proper Invariant NKT Cell Development. Journal of Immunology, 2011, 187, 2122-2129.	0.4	48
58	Diacylglycerol Kinase ζ Regulates Actin Cytoskeleton Reorganization through Dissociation of Rac1 from RhoGDI. Molecular Biology of the Cell, 2009, 20, 2049-2059.	0.9	73
59	Diacylglycerol kinases in immune cell function and selfâ€ŧolerance. Immunological Reviews, 2008, 224, 249-264.	2.8	79
60	Synergistic control of T cell development and tumor suppression by diacylglycerol kinase α and ζ. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11909-11914.	3.3	81
61	Diacylglycerol kinase ζ regulates microbial recognition and host resistance to Toxoplasma gondii. Journal of Experimental Medicine, 2007, 204, 781-792.	4.2	60
62	Disruption of diacylglycerol metabolism impairs the induction of T cell anergy. Nature Immunology, 2006, 7, 1174-1181.	7.0	254
63	Enhanced T cell responses due to diacylglycerol kinase ζ deficiency. Nature Immunology, 2003, 4, 882-890.	7.0	201
64	Regulation of T Cell Receptor-induced Activation of the Ras-ERK Pathway by Diacylglycerol Kinase ζ. Journal of Biological Chemistry, 2002, 277, 31089-31098.	1.6	101
65	Accessibility Control of T Cell Receptor Gene Rearrangement in Developing Thymocytes: The TCR α/δ Locus. Immunologic Research, 2000, 22, 127-136.	1.3	16
66	Developmental regulation of V(D)J recombination at the TCR a/5 locus. Immunological Reviews, 1998, 165, 131-147.	2.8	53
67	Regulation of  T Cell Receptor δ Gene Rearrangement by CBF/PEBP2. Journal of Experimental Medicine, 1997, 185, 1193-1202.	4.2	37