
Ragnar Kiebach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4607100/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Testing of high performance asymmetric tubular BSCF membranes under pressurized operation – A proof-of-concept study on a 7 tube module. Journal of Membrane Science, 2022, 644, 120176.	4.1	9
2	A review on dual-phase oxygen transport membranes: from fundamentals to commercial deployment. Journal of Materials Chemistry A, 2022, 10, 2152-2195.	5.2	31
3	Planar proton-conducting ceramic cells for hydrogen extraction: Mechanical properties, electrochemical performance and up-scaling. International Journal of Hydrogen Energy, 2022, 47, 6745-6754.	3.8	6
4	Joining of Co coated ferritic stainless steel to ceramic solid oxide cells by a novel Ag-SiO2 braze. Journal of Materials Science and Technology, 2022, 121, 174-180.	5.6	1
5	Fracture toughness of reactive bonded Co–Mn and Cu–Mn contact layers after long-term aging. Ceramics International, 2022, 48, 20699-20711.	2.3	2
6	Torsional behaviour of a glass-ceramic joined alumina coated Crofer 22 APU steel. Ceramics International, 2022, 48, 25368-25373.	2.3	1
7	Ag–SiO2 - An optimized braze for robust joining of commercial coated stainless steel to ceramic solid oxide cells. Ceramics International, 2022, 48, 32740-32747.	2.3	3
8	Stable, asymmetric, tubular oxygen transport membranes of (Sc2O3)0.10(Y2O3)0.01(ZrO2)0.89 – LaCr0.85Cu0.10Ni0.05O3-δ. Open Ceramics, 2022, 11, 100292.	1.0	0
9	Fast relaxation of stresses in solid oxide cells through reduction. Part I: Macro-stresses in the cell layers. International Journal of Hydrogen Energy, 2021, 46, 1548-1559.	3.8	7
10	High toughness well conducting contact layers for solid oxide cell stacks by reactive oxidative bonding. Journal of the European Ceramic Society, 2021, 41, 2699-2708.	2.8	3
11	Tetragonal phase stability maps of ceria-yttria co-doped zirconia: From powders to sintered ceramics. Ceramics International, 2020, 46, 9396-9405.	2.3	12
12	Comparison of MnCo2O4 coated Crofer 22ÂH, 441, 430 as interconnects for intermediate-temperature solid oxide fuel cell stacks. Journal of Alloys and Compounds, 2020, 821, 153229.	2.8	47
13	Synthesis and characterization of a geopolymer/hexagonal‑boron nitride composite for free forming 3D extrusion-based printing. Applied Clay Science, 2020, 199, 105870.	2.6	18
14	SOFC stacks for mobile applications with excellent robustness towards thermal stresses. International Journal of Hydrogen Energy, 2020, 45, 29201-29211.	3.8	31
15	A novel Ag based sealant for solid oxide cells with a fully tunable thermal expansion. Journal of Alloys and Compounds, 2020, 831, 154608.	2.8	19
16	Promotion of oxygen reduction and evolution by applying a nanoengineered hybrid catalyst on cobalt free electrodes for solid oxide cells. Journal of Materials Chemistry A, 2020, 8, 9039-9048.	5.2	22
17	Enhancing the Robustness of Brittle Solid Oxide Cell Stack Components. ECS Transactions, 2019, 91, 2201-2211.	0.3	5
18	Improved Robustness and Low Area Specific Resistance with Novel Contact Layers for the Solid Oxide Cell Air Electrode. ECS Transactions, 2019, 91, 2225-2232.	0.3	4

#	Article	IF	CITATIONS
19	Gd0.2Ce0.8O1.9/Y0.16Zr0.84O1.92 nanocomposite thin films for low temperature ionic conductivity. Journal of Physics and Chemistry of Solids, 2019, 132, 162-171.	1.9	5
20	Improving the performance of oxygen transport membranes in simulated oxy-fuel power plant conditions by catalytic surface enhancement. Journal of Membrane Science, 2019, 580, 307-315.	4.1	9
21	Improving the interface adherence at sealings in solid oxide cell stacks. Journal of Materials Research, 2019, 34, 1167-1178.	1.2	12
22	Impact of cation redox chemistry on continuous hydrothermal synthesis of 2D-Ni(Co/Fe) hydroxides. Reaction Chemistry and Engineering, 2019, 4, 2060-2073.	1.9	3
23	Printing of NiO-YSZ nanocomposites: From continuous synthesis to inkjet deposition. Journal of the European Ceramic Society, 2019, 39, 1279-1286.	2.8	9
24	Enhancing the long-term stability of Ag based seals for solid oxide fuel/electrolysis applications by simple interconnect aluminization. International Journal of Hydrogen Energy, 2019, 44, 3063-3074.	3.8	15
25	Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing. Journal of the European Ceramic Society, 2019, 39, 2-8.	2.8	17
26	Performance and stability of (ZrO 2) 0.89 (Y 2 O 3) 0.01 (Sc 2 O 3) 0.10 -LaCr 0.85 Cu 0.10 Ni 0.05 O 3-δ oxygen transport membranes under conditions relevant for oxy-fuel combustion. Journal of Membrane Science, 2018, 552, 115-123.	4.1	17
27	Continuous Hydrothermal Flow Synthesis of LaCrO ₃ in Supercritical Water and Its Application in Dual-Phase Oxygen Transport Membranes. Industrial & Engineering Chemistry Research, 2018, 57, 2123-2130.	1.8	7
28	A Baâ€free sealing glass with a high coefficient of thermal expansion and excellent interface stability optimized for SOFC/SOEC stack applications. International Journal of Applied Ceramic Technology, 2018, 15, 1011-1022.	1.1	27
29	Continuous hydrothermal flow synthesis of Gdâ€doped CeO ₂ (<scp>GDC</scp>) nanoparticles for inkjet printing of <scp>SOFC</scp> electrolytes. International Journal of Applied Ceramic Technology, 2018, 15, 315-327.	1.1	12
30	Effect of spherical porosity on co-fired dense/porous zirconia bi-layers cambering. Journal of the European Ceramic Society, 2018, 38, 173-179.	2.8	5
31	Exploring the Processing of Tubular Chromite- and Zirconia-Based Oxygen Transport Membranes. Ceramics, 2018, 1, 229-245.	1.0	5
32	Continuous Hydrothermal Flow Synthesis of Co _{1–<i>x</i>} Ni <i>_x</i> Fe ₂ O ₄ (<i>x</i> = 0–0.8) Nanoparticles and Their Catalytic Properties for CO Oxidation and Oxygen Evolution Reaction. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2018, 644, 1727-1733.	0.6	6
33	Hydrothermal Synthesis, Characterization, and Sintering Behavior of Core-Shell Particles: A Principle Study on Lanthanum Strontium Cobaltite Coated with Nanosized Gadolinium Doped Ceria. Ceramics, 2018, 1, 246-260.	1.0	3
34	Joining of solid oxide fuel/electrolysis cells at low temperature: A novel method to obtain high strength seals already at 300â€ [–] ðC. Journal of Power Sources, 2018, 400, 296-304.	4.0	9
35	Enhanced densification of thin tape cast Ceria-Gadolinium Oxide (CGO) layers by rheological optimization of slurries. Ceramics International, 2017, 43, 5647-5653.	2.3	15
36	On the Properties and Long-Term Stability of Infiltrated Lanthanum Cobalt Nickelates (LCN) in Solid Oxide Fuel Cell Cathodes. Journal of the Electrochemical Society, 2017, 164, F748-F758.	1.3	8

#	Article	IF	CITATIONS
37	In-situ formed Ce0.8Gd0.2O1.9 barrier layers on yttria stabilized zirconia backbones by infiltration - A promising path to high performing oxygen electrodes of solid oxide cells. Solid State Ionics, 2017, 304, 51-59.	1.3	10
38	Investigation of a Spinelâ€forming Cuâ€Mn Foam as an Oxygen Electrode Contact Material in a Solid Oxide Cell Single Repeating Unit. Fuel Cells, 2017, 17, 730-734.	1.5	17
39	A Novel SOFC/SOEC Sealing Glass with a Low SiO ₂ Content and a High Thermal Expansion Coefficient. ECS Transactions, 2017, 78, 1739-1747.	0.3	15
40	Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects. Journal of the Electrochemical Society, 2017, 164, F1005-F1010.	1.3	15
41	Stability and performance of robust dual-phase (ZrO2)0.89(Y2O3)0.01(Sc2O3)0.10-Al0.02Zn0.98O1.01 oxygen transport membranes. Journal of Membrane Science, 2017, 543, 18-27.	4.1	12
42	Simulation, design and proof-of-concept of a two-stage continuous hydrothermal flow synthesis reactor for synthesis of functionalized nano-sized inorganic composite materials. Journal of Supercritical Fluids, 2016, 117, 1-12.	1.6	25
43	Oxygen permeation flux through 10Sc1YSZ-MnCo 2 O 4 asymmetric membranes prepared by two-step sintering. Fuel Processing Technology, 2016, 152, 192-199.	3.7	16
44	Infiltration of SOFC Stacks: Evaluation ofÂthe Electrochemical Performance Enhancement and the Underlying Changes in the Microstructure. Fuel Cells, 2016, 16, 80-88.	1.5	26
45	An Ag based brazing system with a tunable thermal expansion for the use as sealant for solid oxide cells. Journal of Power Sources, 2016, 315, 339-350.	4.0	46
46	Joining of ceramic Ba0.5Sr0.5Co0.8Fe0.2O3 membranes for oxygen production to high temperature alloys. Journal of Membrane Science, 2016, 506, 11-21.	4.1	23
47	Poly(vinylpyrrolidone) as dispersing agent for cerium-gadolinium oxide (CGO) suspensions. Journal of Materials Science, 2016, 51, 1098-1106.	1.7	11
48	Influence of hydroxyl content of binders on rheological properties of cerium–gadolinium oxide (CGO) screen printing inks. Journal of the European Ceramic Society, 2015, 35, 1495-1504.	2.8	31
49	Stability of La 0.6 Sr 0.4 Co 0.2 Fe 0.8 O 3 /Ce 0.9 Gd 0.1 O 2 cathodes during sintering and solid oxide fuel cell operation. Journal of Power Sources, 2015, 283, 151-161.	4.0	77
50	Colloidal stabilization of cerium-gadolinium oxide (CGO) suspensions via rheology. Journal of the European Ceramic Society, 2015, 35, 2823-2832.	2.8	6
51	Modeling of Ni Diffusion Induced Austenite Formation in Ferritic Stainless Steel Interconnects. ECS Transactions, 2015, 68, 1691-1700.	0.3	5
52	TOF-SIMS characterization of impurity enrichment and redistribution in solid oxide electrolysis cells during operation. Dalton Transactions, 2014, 43, 14949-14958.	1.6	13
53	Infiltration of ionic-, electronic- and mixed-conducting nano particles into La0.75Sr0.25MnO3–Y0.16Zr0.84O2 cathodes – A comparative study of performance enhancement and stability atÂdifferent temperatures. Journal of Power Sources, 2013, 228, 170-177.	4.0	46
54	Characterization of impregnated GDC nano structures and their functionality in LSM based cathodes. Solid State Ionics, 2012, 224, 21-31.	1.3	38

#	Article	IF	CITATIONS
55	Determination of redox-active centers in praseodymium doped ceria by in situ-XANES spectroscopy. Chemical Physics Letters, 2012, 537, 80-83.	1.2	3
56	Spectroelectrochemical cell forin situstudies of solid oxide fuel cells. Journal of Synchrotron Radiation, 2012, 19, 400-407.	1.0	20
57	Investigation of Failure Mechanisms in Ti Containing Brazing Alloys Used in SOFC/SOEC Environments. , 2010, , .		1
58	Photoluminescence from Si nanocrystals obtained by electrochemical methods embedded in a silicon oxide matrix. , 2009, , .		1
59	[Fe(C ₆ H ₁₄ N ₂) ₂][Sb ₆ S ₁₀] – Using a Transition Metal Complex Acting as a Pillar for the Generation of a Threeâ€dimensional Thioantimonate(III) Network. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2009, 635, 988-994.	0.6	26
60	THE DEPOSITION AND CONTROL OF SELF ASSEMBLED SILICON NANO ISLANDS ON CRYSTALLINE SILICON. Selected Topics in Electornics and Systems, 2009, , 143-152.	0.2	0
61	Tuning the Magnetic Properties of Li _{<i>x</i>} CrTi _{0.25} Se ₂ (0.03≤i>xâ‰Ø.7) by Directed Deintercalation of Lithium. Chemistry - A European Journal, 2008, 14, 5021-5029.	1.7	8
62	Controlling the Size and Density of Silicon Nanostructures by Incorporation of Nitrogen. Chemical Vapor Deposition, 2008, 14, 353-357.	1.4	1
63	Room temperature quantum tunneling and Coulomb blockade in silicon-rich oxide. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 41, 264-268.	1.3	4
64	Hydrothermal Formation of W/Mo-Oxides: A Multidisciplinary Study of Growth and Shape. Chemistry of Materials, 2008, 20, 3022-3033.	3.2	64
65	THE DEPOSITION AND CONTROL OF SELF ASSEMBLED SILICON NANO ISLANDS ON CRYSTALLINE SILICON. International Journal of High Speed Electronics and Systems, 2008, 18, 901-910.	0.3	2
66	Room temperature current oscillations in naturally grown silicon nanocrystallites embedded in oxide films. Journal of Applied Physics, 2008, 103, 063706.	1.1	6
67	[VIV15SbIII6O42]6–: An antimony analogue of the molecular magnet [V15As6O42(H2O)]6–. Dalton Transactions, 2007, , 3221.	1.6	64
68	Morphological and Kinetic Studies on Hexagonal Tungstates. Chemistry of Materials, 2007, 19, 185-197.	3.2	54
69	Syntheses and X-ray Diffraction, Photochemical, and Optical Characterization of Cu2SixSn1-xS3(0.4) Tj ETQq1 1	0.78431	4 rgBT /Over
70	Synthesis of Thin Cr3Se4Films from Modulated Elemental Reactants via Two Amorphous Intermediates:Â A Detailed Examination of the Reaction Mechanism. Inorganic Chemistry, 2006, 45, 2704-2712.	1.9	18
71	Combined In Situ EDXRD/EXAFS Investigation of the Crystal Growth of [Co(C6H18N4)][Sb2S4] under Solvothermal Conditions:A Two Different Reaction Pathways Leading to the Same Product. Chemistry of Materials, 2006, 18, 1196-1205.	3.2	64
72	[C6H21N4][Sb9S14O]: Solvothermal synthesis, crystal structure and characterization of the first non-centrosymmetric open Sb–S–O framework containing the new [SbS2O] building unit. Journal of Solid State Chemistry, 2006, 179, 3082-3086.	1.4	11

#	Article	IF	CITATIONS
73	A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy. Journal of Solid State Chemistry, 2006, 179, 3330-3337.	1.4	6
74	[C3H10NO]2[Sb4S7]: Solvothermal syntheses, crystal structures and properties of the first thioantimonates containing aminoalcohols as structure directors. Solid State Sciences, 2006, 8, 541-547.	1.5	13
75	[C6H17N3]4[Sb4V16O42]â‹2H2O and [NH4]4[Sb8V14O42]â‹2H2O— the first isolated Sb derivates of the [V18O42] family. Solid State Sciences, 2006, 8, 964-970.	1.5	60
76	The structure directing effect of organic cations onto the crystal structures of layered thioantimonates(III): Solvothermal synthesis and crystal structures of five new compounds containing the 2â^ž[Sb8S13]2â^' anion. Solid State Sciences, 2006, 8, 1085-1097.	1.5	19
77	The Reaction Mechanism of a Complex Intercalation System: In Situ X-ray Diffraction Studies of the Chemical and Electrochemical Lithium Intercalation in Cr4TiSe8. Chemistry - A European Journal, 2006, 12, 6348-6355.	1.7	19
78	Studying the Solvothermal Formation of MoO3 Fibers by Complementary In Situ EXAFS/EDXRD Techniques. Angewandte Chemie - International Edition, 2005, 44, 5643-5647.	7.2	100
79	Four New Thioantimonates(III) with the General Formula [TM(ten)]Sb4S7 (TM: Mn, Fe, Co, Zn) with the Transition Metal as Part of a Thioantimonate(III) Network Synthesized under Solvothermal Conditions and Tuning of the Optical Band Gap by the Transition Metal Cation ChemInform, 2005, 36, no.	0.1	0
80	In-situ Energy Dispersive X-ray Diffraction Studies of the Crystallization of (1, 2-DAPH2)2Ge9(OH)4O18 تزاء⁄2 2 H2O under Solvothermal Conditions. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 369-374.	0.6	31
81	Four New Thioantimonates(III) with the General Formula [TM(tren)]Sb4S7 (TM = Mn, Fe, Co, Zn) with the Transition Metal as Part of a Thioantimonate(III) Network Synthesized under Solvothermal Conditions and Tuning of the Optical Band Gap by the Transition Metal Cation. Zeitschrift Fur Anorganische Und Allgemeine Chemie. 2004. 630. 1816-1822.	0.6	81
82	Two Novel Thioantimonates(III) with the Same Stoichiometric Sb:S Ratio but Different Crystal Structures: Solvothermal Synthesis, Crystal Structures, Thermal Stability and Spectroscopy of (C6N3H17)Sb6S10 and (C7N2H13)3Sb9S15. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2004, 630, 2398-2404.	0.6	31
83	[Ni(C4H13N3)2]3(Sb3S6)2: The First Structure Containing Isolated Heterocyclic [Sb3S6]3â^ Anions. European Journal of Inorganic Chemistry, 2004, 2004, 2553-2556.	1.0	52
84	[Ni(C4H13N3)2]3(Sb3S6)2: The First Structure Containing Isolated Heterocyclic [Sb3S6]3- Anions ChemInform, 2004, 35, no.	0.1	0
85	Solvothermal Synthesis and Characterization of the New Iron Thioantimonates(III) [Fe(C6H18N4)]FeSbS4 and [Fe(C4H13N3)2] Fe2Sb4S10 Containing Fell and Felll and Protein-Analogous [2FeIII-2S]2+ Clusters ChemInform, 2003, 34, no.	0.1	0