Cheng-Sheng Zhao

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/4607085/cheng-sheng-zhao-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 286
 10,511
 55
 87

 papers
 citations
 h-index
 g-index

 295
 12,187
 7.6
 6.6

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
286	Improved Cooling Performance of Hydrogel Wound Dressings via Integrating Thermal Conductivity and Heat Storage Capacity for Burn Therapy <i>Biomacromolecules</i> , 2022 ,	6.9	3
285	Emerging 2D Materials for Electrocatalytic Applications: Synthesis, Multifaceted Nanostructures, and Catalytic Center Design <i>Small</i> , 2022 , e2105831	11	8
284	Superhydrophilic and polyporous nanofibrous membrane with excellent photocatalytic activity and recyclability for wastewater remediation under visible light irradiation. <i>Chemical Engineering Journal</i> , 2022 , 427, 131685	14.7	6
283	Immune-stealth carboxymethyl chitosan-based nanomaterials for magnetic resonance imaging-guided photothermal therapy <i>Carbohydrate Polymers</i> , 2022 , 288, 119382	10.3	O
282	Anticoagulant biomimetic consecutive gas exchange network for advanced artificial lung membrane. <i>Journal of Membrane Science</i> , 2022 , 653, 120502	9.6	1
281	Alloyed nanostructures integrated metal-phenolic nanoplatform for synergistic wound disinfection and revascularization <i>Bioactive Materials</i> , 2022 , 16, 95-106	16.7	2
280	🗓+1>2ŪHighly efficient removal of organic pollutants by composite nanofibrous membrane based on the synergistic effect of adsorption and photocatalysis. <i>Journal of Materials Science and Technology</i> , 2022 , 124, 76-85	9.1	3
279	Extracorporeal hemoperfusion therapy for sepsis: Multi-lamellar microspheres towards cascade endotoxin removal and broad-spectrum radical eliminating. <i>Chemical Engineering Journal</i> , 2022 , 444, 136499	14.7	3
278	A rapid-triggered approach towards antibacterial hydrogel wound dressing with synergic photothermal and sterilization profiles 2022 , 138, 212873		1
277	Interfacial Atom-Substitution Engineered Transition-Metal Hydroxide Nanofibers with High-Valence Fe for Efficient Electrochemical Water Oxidation <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	6
276	Versatile and robust poly(ionic liquid) coatings with intelligent superhydrophilicity/superhydrophobicity switch in high-efficient oil-water separation. <i>Separation and Purification Technology</i> , 2021 , 120100	8.3	3
275	Topographic Cues Guiding Cell Polarization via Distinct Cellular Mechanosensing Pathways. <i>Small</i> , 2021 , e2104328	11	8
274	Hemocompatibility enhancement of polyethersulfone membranes: Strategies and challenges 2021 , 1, 100013		O
273	Long-term, synergistic and high-efficient antibacterial polyacrylonitrile nanofibrous membrane prepared by "one-pot" electrospinning process. <i>Journal of Colloid and Interface Science</i> , 2021 , 609, 718-	798	1
272	Hedgehog artificial macrophage with atomic-catalytic centers to combat Drug-resistant bacteria. Nature Communications, 2021 , 12, 6143	17.4	19
271	Smart Asymmetric Hydrogel with Integrated Multi-Functions of NIR-Triggered Tunable Adhesion, Self-Deformation, and Bacterial Eradication. <i>Advanced Healthcare Materials</i> , 2021 , 10, e2100784	10.1	27
270	Dual-responsive polymersomes as anticancer drug carriers for the co-delivery of doxorubicin and paclitaxel. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 801-808	7.3	9

(2020-2021)

269	Controllable ligand spacing stimulates cellular mechanotransduction and promotes stem cell osteogenic differentiation on soft hydrogels. <i>Biomaterials</i> , 2021 , 268, 120543	15.6	20
268	A Hierarchical Janus Nanofibrous Membrane Combining Direct Osteogenesis and Osteoimmunomodulatory Functions for Advanced Bone Regeneration. <i>Advanced Functional Materials</i> , 2021 , 31, 2008906	15.6	24
267	Multi-functional polyethersulfone nanofibrous membranes with ultra-high adsorption capacity and ultra-fast removal rates for dyes and bacteria. <i>Journal of Materials Science and Technology</i> , 2021 , 78, 131-143	9.1	23
266	Selective potassium uptake via biocompatible zeolite-polymer hybrid microbeads as promising binders for hyperkalemia. <i>Bioactive Materials</i> , 2021 , 6, 543-558	16.7	2
265	Advanced Surfaces by Anchoring Thin Hydrogel Layers of Functional Polymers. <i>Chinese Journal of Polymer Science (English Edition)</i> , 2021 , 39, 14-34	3.5	4
264	Transient blood thinning during extracorporeal blood purification via the inactivation of coagulation factors by hydrogel microspheres. <i>Nature Biomedical Engineering</i> , 2021 , 5, 1143-1156	19	10
263	Facile and green approach towards biomass-derived hydrogel powders with hierarchical micro-nanostructures for ultrafast hemostasis. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 6678-6690	7.3	1
262	Photoenhanced Dual-Functional Nanomedicine for Promoting Wound Healing: Shifting Focus from Bacteria Eradication to Host Microenvironment Modulation. <i>ACS Applied Materials & Discourt Materials & Di</i>	9.5	10
261	Glucose and pH Dual-Responsive Polymersomes with Multilevel Self-Regulation of Blood Glucose for Insulin Delivery. <i>Biomacromolecules</i> , 2021 , 22, 3971-3979	6.9	1
260	Constructing porous channels in superhydrophilic polyethersulfone composite nanofibrous membranes for sustainably enhanced photocatalytic activities in wastewater remediation. <i>Composites Science and Technology</i> , 2021 , 214, 108993	8.6	5
259	A polyethersulfone composite ultrafiltration membrane with the in-situ generation of CdS nanoparticles for the effective removal of organic pollutants and photocatalytic self-cleaning. Journal of Membrane Science, 2021 , 638, 119715	9.6	6
258	Mussel-inspired ultra-stretchable, universally sticky, and highly conductive nanocomposite hydrogels. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 2221-2232	7.3	11
257	Chemical fuel-driven transient polymeric micelle nanoreactors toward reversible trapping and reaction acceleration. <i>Chemical Communications</i> , 2021 , 57, 5786-5789	5.8	3
256	Bioinspired Spiky Peroxidase-Mimics for Localized Bacterial Capture and Synergistic Catalytic Sterilization. <i>Advanced Materials</i> , 2021 , 33, e2005477	24	33
255	Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. <i>Carbohydrate Polymers</i> , 2020 , 243, 116470	10.3	11
254	Hemocompatible magnetic particles with broad-spectrum bacteria capture capability for blood purification. <i>Journal of Colloid and Interface Science</i> , 2020 , 576, 1-9	9.3	8
253	Ligand Diffusion Enables Force-Independent Cell Adhesion via Activating 81 Integrin and Initiating Rac and RhoA Signaling. <i>Advanced Materials</i> , 2020 , 32, e2002566	24	26
252	Functionalized polyurethane sponge based on dopamine derivative for facile and instantaneous clean-up of cationic dyes in a large scale. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123203	12.8	14

251	Radical polymerization as a versatile tool for surface grafting of thin hydrogel films. <i>Polymer Chemistry</i> , 2020 , 11, 4355-4381	4.9	11
250	Biocompatible In Situ Polymerization of Multipurpose Polyacrylamide-Based Hydrogels on Skin via Silver Ion Catalyzation. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 31079-31089	9.5	16
249	Clearance of methylene blue by CdS enhanced composite hydrogel materials. <i>Environmental Technology (United Kingdom)</i> , 2020 , 1-12	2.6	3
248	Design of poly ionic liquids modified cotton fabric with ion species-triggered bidirectional oil-water separation performance. <i>Journal of Hazardous Materials</i> , 2020 , 400, 123163	12.8	14
247	Green Fabrication of Tannic Acid-Inspired Magnetic Composite Nanoparticles toward Cationic Dye Capture and Selective Degradation. <i>ACS Omega</i> , 2020 , 5, 6566-6575	3.9	5
246	Advanced functional polymer materials. <i>Materials Chemistry Frontiers</i> , 2020 , 4, 1803-1915	7.8	70
245	Metal-Organic Framework/Ag-Based Hybrid Nanoagents for Rapid and Synergistic Bacterial Eradication. <i>ACS Applied Materials & Eradication</i> , 12, 13698-13708	9.5	59
244	Amides and Heparin-Like Polymer Co-Functionalized Graphene Oxide Based Core @ Polyethersulfone Based Shell Beads for Bilirubin Adsorption. <i>Macromolecular Bioscience</i> , 2020 , 20, e200	o § 153	4
243	Self-Anticoagulant Nanocomposite Spheres for the Removal of Bilirubin from Whole Blood: A Step toward a Wearable Artificial Liver. <i>Biomacromolecules</i> , 2020 , 21, 1762-1775	6.9	17
242	Construction of Kevlar nanofiber/graphene oxide composite beads as safe, self-anticoagulant, and highly efficient hemoperfusion adsorbents. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 1960-1970	7.3	11
241	A facile and high-efficiency strategy towards instantaneous clean-up of positively-charged microcontaminants by regenerative carboxylated sponge. <i>Chemical Engineering Journal</i> , 2020 , 388, 1243	3 64 .7	9
240	A self-cleaning zwitterionic nanofibrous membrane for highly efficient oil-in-water separation. <i>Science of the Total Environment</i> , 2020 , 729, 138876	10.2	21
239	A chitosan modified asymmetric small-diameter vascular graft with anti-thrombotic and anti-bacterial functions for vascular tissue engineering. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 568-57	77.3	24
238	Precipitated droplets in-situ cross-linking polymerization towards hydrogel beads for ultrahigh removal of positively charged toxins. <i>Separation and Purification Technology</i> , 2020 , 238, 116497	8.3	12
237	Nonadherent Zwitterionic Composite Nanofibrous Membrane with a Halloysite Nanocarrier for Sustained Wound Anti-Infection and Cutaneous Regeneration. <i>ACS Biomaterials Science and Engineering</i> , 2020 , 6, 621-633	5.5	8
236	Rationally designed magnetic poly(catechol-hexanediamine) particles for bacteria removal and on-demand biofilm eradication. <i>Colloids and Surfaces B: Biointerfaces</i> , 2020 , 186, 110728	6	5
235	Immobilization of heparin-mimetic biomacromolecules on FeO nanoparticles as magnetic anticoagulant via mussel-inspired coating. <i>Materials Science and Engineering C</i> , 2020 , 109, 110516	8.3	14
234	Urease immobilized GO core@shell heparin-mimicking polymer beads with safe and effective urea removal for blood purification. <i>International Journal of Biological Macromolecules</i> , 2020 , 156, 1503-1511	7.9	4

233	CoreBhell-structured MOF-derived 2D hierarchical nanocatalysts with enhanced Fenton-like activities. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 3168-3179	13	52
232	Precipitated droplets in-situ cross-linking polymerization and its applications. <i>Polymer Testing</i> , 2020 , 91, 106756	4.5	1
231	Dual-functional polyethersulfone composite nanofibrous membranes with synergistic adsorption and photocatalytic degradation for organic dyes. <i>Composites Science and Technology</i> , 2020 , 199, 108353	8.6	26
230	Fabrication of Hemocompatible Polyethersulfone Derivatives by One-Step Radiation-Induced Homogeneous Polymerization. <i>Materials Today Communications</i> , 2020 , 25, 101548	2.5	3
229	Fast and environmental-friendly approach towards uniform hydrogel particles with ultrahigh and selective removal of anionic dyes. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 104352	6.8	6
228	Metal-Phenolic Networks Nanoplatform to Mimic Antioxidant Defense System for Broad-Spectrum Radical Eliminating and Endotoxemia Treatment. <i>Advanced Functional Materials</i> , 2020 , 30, 2002234	15.6	31
227	Rapid synthesis of PEGylated multiblock polymers by sequence-controlled polymerization in H2O. <i>Polymer Chemistry</i> , 2020 , 11, 417-424	4.9	1
226	Layer-by-Layer Assembly for Surface Tethering of Thin-Hydrogel Films: Design Strategies and Applications. <i>Chemical Record</i> , 2020 , 20, 857-881	6.6	10
225	Urease-Immobilized Magnetic Graphene Oxide as a Safe and Effective Urea Removal Recyclable Nanocatalyst for Blood Purification. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 8955-89	6 4 9	9
224	Vapor induced phase separation towards anion-/near-infrared-responsive pore channels for switchable anti-fouling membranes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8934-8948	13	11
223	A bioinspired strategy towards super-adsorbent hydrogel spheres via self-sacrificing micro-reactors for robust wastewater remediation. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 21386-21403	13	34
222	Semi-interpenetrating polymer network microspheres with superior dimensional stability as multifunctional antibacterial adsorbent materials. <i>Journal of Environmental Chemical Engineering</i> , 2019 , 7, 103393	6.8	8
221	Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. Journal of Materials Chemistry B, 2019 , 7, 1186-1208	7.3	52
220	Size-Transformable Metal©rganic FrameworkDerived Nanocarbons for Localized Chemo-Photothermal Bacterial Ablation and Wound Disinfection. <i>Advanced Functional Materials</i> , 2019 , 29, 1900143	15.6	70
219	Engineering of Tannic Acid Inspired Antifouling and Antibacterial Membranes through Co-deposition of Zwitterionic Polymers and Ag Nanoparticles. <i>Industrial & Description of Chemistry Research</i> , 2019 , 58, 11689-11697	3.9	30
218	Three-Dimensional Graphene Oxide Skeleton Guided Poly(acrylic Acid) Composite Hydrogel Particles with Hierarchical Pore Structure for Hemoperfusion. <i>ACS Biomaterials Science and Engineering</i> , 2019 , 5, 3987-4001	5.5	7
217	General Method for Synthesizing Transition-Metal Phosphide/N-Doped Carbon Nanomaterials for Hydrogen Evolution. <i>Langmuir</i> , 2019 , 35, 9161-9168	4	9
216	Metal-Organic-Framework-Derived 2D Carbon Nanosheets for Localized Multiple Bacterial Eradication and Augmented Anti-infective Therapy. <i>Nano Letters</i> , 2019 , 19, 5885-5896	11.5	90

215	Hexapeptide-conjugated calcitonin for targeted therapy of osteoporosis. <i>Journal of Controlled Release</i> , 2019 , 304, 39-50	11.7	14
214	Chondroitin-analogue decorated magnetic nanoparticles via a click reaction for selective adsorption of low-density lipoprotein. <i>Polymer Chemistry</i> , 2019 , 10, 2540-2550	4.9	3
213	Surface engineering of low-fouling and hemocompatible polyethersulfone membranes via in-situ ring-opening reaction. <i>Journal of Membrane Science</i> , 2019 , 581, 373-382	9.6	20
212	Recent progresses in graphene based bio-functional nanostructures for advanced biological and cellular interfaces. <i>Nano Today</i> , 2019 , 26, 57-97	17.9	43
211	Safe and Effective Removal of Urea by Urease-Immobilized, Carboxyl-Functionalized PES Beads with Good Reusability and Storage Stability. <i>ACS Omega</i> , 2019 , 4, 2853-2862	3.9	10
210	Codeposition of Polydopamine and Zwitterionic Polymer on Membrane Surface with Enhanced Stability and Antibiofouling Property. <i>Langmuir</i> , 2019 , 35, 1430-1439	4	44
209	Ionic-Strength Responsive Zwitterionic Copolymer Hydrogels with Tunable Swelling and Adsorption Behaviors. <i>Langmuir</i> , 2019 , 35, 1146-1155	4	47
208	Functionalized polyethersulfone nanofibrous membranes with ultra-high adsorption capacity for organic dyes by one-step electrospinning. <i>Journal of Colloid and Interface Science</i> , 2019 , 533, 526-538	9.3	54
207	Intelligent antibacterial surface based on ionic liquid molecular brushes for bacterial killing and release. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 5520-5527	7.3	8
206	Antibiofouling Zwitterionic Gradational Membranes with Moisture Retention Capability and Sustained Antimicrobial Property for Chronic Wound Infection and Skin Regeneration. <i>Biomacromolecules</i> , 2019 , 20, 3057-3069	6.9	28
205	Engineering antimicrobial and biocompatible electrospun PLGA fibrous membranes by irradiation grafting polyvinylpyrrolidone and periodate. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 181, 918-926	6	14
204	Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal. <i>Journal of Colloid and Interface Science</i> , 2019 , 556, 492-502	9.3	25
203	Multifunctional negatively-charged poly (ether sulfone) nanofibrous membrane for water remediation. <i>Journal of Colloid and Interface Science</i> , 2019 , 538, 648-659	9.3	28
202	In vitro and in vivo anticoagulant activity of heparin-like biomacromolecules and the mechanism analysis for heparin-mimicking activity. <i>International Journal of Biological Macromolecules</i> , 2019 , 122, 784-792	7.9	16
201	Metal-Organic Precursor Derived Mesoporous Carbon Spheres with Homogeneously Distributed Molybdenum Carbide/Nitride Nanoparticles for Efficient Hydrogen Evolution in Alkaline Media. <i>Advanced Functional Materials</i> , 2019, 29, 1807419	15.6	68
200	A green approach towards functional hydrogel particles from synthetic polymers via spherical capsule mini-reactors. <i>Chemical Engineering Journal</i> , 2019 , 359, 1360-1371	14.7	22
199	A new approach for membrane modification based on electrochemically mediated living polymerization and self-assembly of N-tert-butyl amide- and Eyclodextrin-involved macromolecules for blood purification. <i>Materials Science and Engineering C</i> , 2019 , 95, 122-133	8.3	11
198	A template-hatched method towards poly(acrylic acid) hydrogel spheres with ultrahigh ion exchange capacity and robust adsorption of environmental toxins. <i>Journal of Industrial and Engineering Chemistry</i> 2019 , 69, 422-431	6.3	15

(2018-2019)

197	Multifunctionalized polyethersulfone membranes with networked submicrogels to improve antifouling property, antibacterial adhesion and blood compatibility. <i>Materials Science and Engineering C</i> , 2019 , 96, 402-411	8.3	11	
196	Biocompatible graphene-based nanoagent with NIR and magnetism dual-responses for effective bacterial killing and removal. <i>Colloids and Surfaces B: Biointerfaces</i> , 2019 , 173, 266-275	6	26	
195	Ionic strength- and thermo-responsive polyethersulfone composite membranes with enhanced antifouling properties. <i>New Journal of Chemistry</i> , 2018 , 42, 5323-5333	3.6	12	
194	Bioinspired heptapeptides as functionalized mineralization inducers with enhanced hydroxyapatite affinity. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 1984-1994	7.3	21	
193	Thermoresponsive Antibacterial Surfaces Switching from Bacterial Adhesion to Bacterial Repulsion. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1700590	3.9	9	
192	Reinforced-Concrete Structured Hydrogel Microspheres with Ultrahigh Mechanical Strength, Restricted Water Uptake, and Superior Adsorption Capacity. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 5950-5958	8.3	36	
191	Rationally designed magnetic nanoparticles as anticoagulants for blood purification. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 164, 316-323	6	15	
190	Engineering sodium alginate-based cross-linked beads with high removal ability of toxic metal ions and cationic dyes. <i>Carbohydrate Polymers</i> , 2018 , 187, 85-93	10.3	57	
189	Facile Fabrication of Mussel-Inspired Multifunctional Polymeric Membranes with Remarkable Anticoagulant, Antifouling, and Antibacterial Properties. <i>Macromolecular Materials and Engineering</i> , 2018 , 303, 1700378	3.9	8	
188	Design of Carrageenan-Based Heparin-Mimetic Gel Beads as Self-Anticoagulant Hemoperfusion Adsorbents. <i>Biomacromolecules</i> , 2018 , 19, 1966-1978	6.9	39	
187	Post-functionalization of carboxylic polyethersulfone composite membranes. <i>Composites Science and Technology</i> , 2018 , 156, 48-60	8.6	10	
186	Tannic acid-inspiration and post-crosslinking of zwitterionic polymer as a universal approach towards antifouling surface. <i>Chemical Engineering Journal</i> , 2018 , 337, 122-132	14.7	84	
185	Macromol. Mater. Eng. 3/2018. Macromolecular Materials and Engineering, 2018, 303, 1870011	3.9		
184	Integrating zwitterionic polymer and Ag nanoparticles on polymeric membrane surface to prepare antifouling and bactericidal surface via Schiff-based layer-by-layer assembly. <i>Journal of Colloid and Interface Science</i> , 2018 , 510, 308-317	9.3	48	
183	Nonchemotherapic and Robust Dual-Responsive Nanoagents with On-Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection. <i>Advanced Functional Materials</i> , 2018 , 28, 17057	70 ^{§5.6}	92	
182	Root-soil structure inspired hydrogel microspheres with high dimensional stability and anion-exchange capacity. <i>Journal of Colloid and Interface Science</i> , 2018 , 532, 680-688	9.3	7	
181	Nanofibrous membranes with surface migration of functional groups for ultrafast wastewater remediation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 13359-13372	13	49	
180	A facile approach towards amino-coated ferroferric oxide nanoparticles for environmental pollutant removal. <i>Journal of Colloid and Interface Science</i> , 2018 , 513, 647-657	9.3	18	

179	Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property. <i>Materials Science and Engineering C</i> , 2018 , 84, 52-59	8.3	16
178	One-step electrospinning of negatively-charged polyethersulfone nanofibrous membranes for selective removal of cationic dyes. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2018 , 82, 179-1	858 ³	18
177	Mussel-Inspired Synthesis of NIR-Responsive and Biocompatible Ag-Graphene 2D Nanoagents for Versatile Bacterial Disinfections. <i>ACS Applied Materials & Disinfections</i> , 2018, 10, 296-307	9.5	70
176	One-step phosphorylated poly(amide-amine) dendrimer loaded with apigenin for simultaneous remineralization and antibacterial of dentine. <i>Colloids and Surfaces B: Biointerfaces</i> , 2018 , 172, 760-768	6	22
175	Design of Robust Thermal and Anion Dual-Responsive Membranes with Switchable Response Temperature. <i>ACS Applied Materials & Damp; Interfaces</i> , 2018 , 10, 36443-36455	9.5	12
174	A mussel-inspired approach towards heparin-immobilized cellulose gel beads for selective removal of low density lipoprotein from whole blood. <i>Carbohydrate Polymers</i> , 2018 , 202, 116-124	10.3	19
173	Design of carboxymethyl chitosan-based heparin-mimicking cross-linked beads for safe and efficient blood purification. <i>International Journal of Biological Macromolecules</i> , 2018 , 117, 392-400	7.9	13
172	Bidirectionally pH-Responsive Zwitterionic Polymer Hydrogels with Switchable Selective Adsorption Capacities for Anionic and Cationic Dyes. <i>Industrial & Dyes amp; Engineering Chemistry Research</i> , 2018 , 57, 8209-8219	3.9	25
171	Antibacterial Nanoagents: Nonchemotherapic and Robust Dual-Responsive Nanoagents with On-Demand Bacterial Trapping, Ablation, and Release for Efficient Wound Disinfection (Adv. Funct. Mater. 21/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870145	15.6	3
170	A substrate-independent ultrathin hydrogel film as an antifouling and antibacterial layer for a microfiltration membrane anchored via a layer-by-layer thiol-ene click reaction. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 3904-3913	7.3	27
169	Bioinspired and biocompatible carbon nanotube-Ag nanohybrid coatings for robust antibacterial applications. <i>Acta Biomaterialia</i> , 2017 , 51, 479-494	10.8	71
168	Heparin-mimetic polyurethane hydrogels with anticoagulant, tunable mechanical property and controllable drug releasing behavior. <i>International Journal of Biological Macromolecules</i> , 2017 , 98, 1-11	7.9	10
167	Aramid nanofiber as an emerging nanofibrous modifier to enhance ultrafiltration and biological performances of polymeric membranes. <i>Journal of Membrane Science</i> , 2017 , 528, 251-263	9.6	52
166	One-pot synthesis of highly hemocompatible polyurethane/polyethersulfone composite membranes. <i>Polymer Bulletin</i> , 2017 , 74, 3797-3818	2.4	6
165	Engineering of hemocompatible and antifouling polyethersulfone membranes by blending with heparin-mimicking microgels. <i>Biomaterials Science</i> , 2017 , 5, 1112-1121	7.4	22
164	Design of Antibacterial Poly(ether sulfone) Membranes via Covalently Attaching Hydrogel Thin Layers Loaded with Ag Nanoparticles. <i>ACS Applied Materials & Design Series</i> , 2017, 9, 15962-15974	9.5	77
163	Design of anion species/strength responsive membranes via in-situ cross-linked copolymerization of ionic liquids. <i>Journal of Membrane Science</i> , 2017 , 535, 158-167	9.6	24
162	A facile way to prepare anti-fouling and blood-compatible polyethersulfone membrane via blending with heparin-mimicking polyurethanes. <i>Materials Science and Engineering C</i> , 2017 , 78, 1035-10-	4 <mark>8</mark> .3	25

(2017-2017)

161	Fabrication of metronidazole loaded poly (£aprolactone)/zein core/shell nanofiber membranes via coaxial electrospinning for guided tissue regeneration. <i>Journal of Colloid and Interface Science</i> , 2017 , 490, 270-278	9.3	88	
160	Mussel-inspired chitosan-polyurethane coatings for improving the antifouling and antibacterial properties of polyethersulfone membranes. <i>Carbohydrate Polymers</i> , 2017 , 168, 310-319	10.3	47	
159	Direct catechol conjugation of mussel-inspired biomacromolecule coatings to polymeric membranes with antifouling properties, anticoagulant activity and cytocompatibility. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 3035-3046	7.3	23	
158	Mussel-inspired post-heparinization of a stretchable hollow hydrogel tube and its potential application as an artificial blood vessel. <i>Polymer Chemistry</i> , 2017 , 8, 2266-2275	4.9	31	
157	Core@shell poly (acrylic acid) microgels/polyethersulfone beads for dye uptake from wastewater. Journal of Environmental Chemical Engineering, 2017, 5, 1732-1743	6.8	12	
156	Introducing multiple bio-functional groups on the poly(ether sulfone) membrane substrate to fabricate an effective antithrombotic bio-interface. <i>Biomaterials Science</i> , 2017 , 5, 2416-2426	7.4	21	
155	Substrate-Independent Ag-Nanoparticle-Loaded Hydrogel Coating with Regenerable Bactericidal and Thermoresponsive Antibacterial Properties. <i>ACS Applied Materials & Discounty of the Applied Materia</i>	-44791	63	
154	Antibacterial and anti-biofouling coating on hydroxyapatite surface based on peptide-modified tannic acid. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 160, 136-143	6	31	
153	Anion-Responsive Poly(ionic liquid)s Gating Membranes with Tunable Hydrodynamic Permeability. <i>ACS Applied Materials & Discours (Materials & Discours)</i> , 9, 32237-32247	9.5	16	
152	Inflammation-responsive self-regulated drug release from ultrathin hydrogel coating. <i>Colloids and Surfaces B: Biointerfaces</i> , 2017 , 158, 518-526	6	21	
151	Hexanediamine functionalized poly (glycidyl methacrylate-co-N-vinylpyrrolidone) particles for bilirubin removal. <i>Journal of Colloid and Interface Science</i> , 2017 , 504, 214-222	9.3	25	
150	A self-defensive bilayer hydrogel coating with bacteria triggered switching from cell adhesion to antibacterial adhesion. <i>Polymer Chemistry</i> , 2017 , 8, 5344-5353	4.9	15	
149	Co-deposition towards mussel-inspired antifouling and antibacterial membranes by using zwitterionic polymers and silver nanoparticles. <i>Journal of Materials Chemistry B</i> , 2017 , 5, 7186-7193	7.3	65	
148	Nanopatterned Adhesive, Stretchable Hydrogel to Control Ligand Spacing and Regulate Cell Spreading and Migration. <i>ACS Nano</i> , 2017 , 11, 8282-8291	16.7	70	
147	Bio-inspired peptide decorated dendrimers for a robust antibacterial coating on hydroxyapatite. <i>Polymer Chemistry</i> , 2017 , 8, 4264-4279	4.9	24	
146	Multi-responsive, tough and reversible hydrogels with tunable swelling property. <i>Journal of Hazardous Materials</i> , 2017 , 322, 499-507	12.8	22	
145	Super-Anticoagulant Heparin-Mimicking Hydrogel Thin Film Attached Substrate Surfaces to Improve Hemocompatibility. <i>Macromolecular Bioscience</i> , 2017 , 17, 1600281	5.5	24	
144	A facile approach towards amino-coated polyethersulfone particles for the removal of toxins. Journal of Colloid and Interface Science, 2017 , 485, 39-50	9.3	37	

143	Bioinspired Polyethersulfone Membrane Design via Blending with Functional Polyurethane. <i>International Journal of Polymer Science</i> , 2017 , 2017, 1-10	2.4	4
142	Host-Guest Self-Assembly Toward Reversible Thermoresponsive Switching for Bacteria Killing and Detachment. <i>ACS Applied Materials & Detachment. ACS Applied Materials & Detachment. Detachment & Detach</i>	9.5	49
141	Graphene oxide linked sulfonate-based polyanionic nanogels as biocompatible, robust and versatile modifiers of ultrafiltration membranes. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 6143-6153	7.3	24
140	Synthesis and Characterization of Ultrahigh Ion-Exchange Capacity Polymeric Membranes. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 9667-9675	3.9	11
139	Improved antifouling and antimicrobial efficiency of ultrafiltration membranes with functional carbon nanotubes. <i>RSC Advances</i> , 2016 , 6, 88265-88276	3.7	30
138	Graphene oxide and sulfonated polyanion co-doped hydrogel films for dual-layered membranes with superior hemocompatibility and antibacterial activity. <i>Biomaterials Science</i> , 2016 , 4, 1431-40	7.4	37
137	A robust way to prepare blood-compatible and anti-fouling polyethersulfone membrane. <i>Colloids and Surfaces B: Biointerfaces</i> , 2016 , 146, 326-33	6	16
136	Highly swellable and biocompatible graphene/heparin-analogue hydrogels for implantable drug and protein delivery. <i>RSC Advances</i> , 2016 , 6, 71893-71904	3.7	14
135	Heparin-Like Chitosan Hydrogels with Tunable Swelling Behavior, Prolonged Clotting Times, and Prevented Contact Activation and Complement Activation. <i>Biomacromolecules</i> , 2016 , 17, 4011-4020	6.9	31
134	Graphene oxide-based polyethersulfone coreEhell particles for dye uptake. <i>RSC Advances</i> , 2016 , 6, 102	:38 ₉₇ 10	23)97
134	Graphene oxide-based polyethersulfone coreEhell particles for dye uptake. <i>RSC Advances</i> , 2016 , 6, 102 Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. <i>Colloid and Polymer Science</i> , 2016 , 294, 441-453	2389 7 10	23 ₉ 97 30
	Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and		
133	Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. <i>Colloid and Polymer Science</i> , 2016 , 294, 441-453 Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. <i>Journal</i>	2.4	30
133	Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. <i>Colloid and Polymer Science</i> , 2016 , 294, 441-453 Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 3203-3215 Preparation, characterization and application of poly(sodium p-styrenesulfonate)/poly(methyl	2.4	30 51
133 132 131	Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. <i>Colloid and Polymer Science</i> , 2016 , 294, 441-453 Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 3203-3215 Preparation, characterization and application of poly(sodium p-styrenesulfonate)/poly(methyl methacrylate) particles. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 34, 415-421 Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: bactericidal activity	2.4 7.3 6.3	30 51 17
133 132 131 130	Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. <i>Colloid and Polymer Science</i> , 2016 , 294, 441-453 Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 3203-3215 Preparation, characterization and application of poly(sodium p-styrenesulfonate)/poly(methyl methacrylate) particles. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 34, 415-421 Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: bactericidal activity and mammal cell toxicity. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2749-2756 Functional polyethersulfone particles for the removal of bilirubin. <i>Journal of Materials Science</i> :	2.4 7.3 6.3	30 51 17 34
133 132 131 130	Engineering polyethersulfone hollow fiber membrane with improved blood compatibility and antibacterial property. <i>Colloid and Polymer Science</i> , 2016 , 294, 441-453 Anticoagulant sodium alginate sulfates and their mussel-inspired heparin-mimetic coatings. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 3203-3215 Preparation, characterization and application of poly(sodium p-styrenesulfonate)/poly(methyl methacrylate) particles. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 34, 415-421 Mussel-inspired coatings on Ag nanoparticle-conjugated carbon nanotubes: bactericidal activity and mammal cell toxicity. <i>Journal of Materials Chemistry B</i> , 2016 , 4, 2749-2756 Functional polyethersulfone particles for the removal of bilirubin. <i>Journal of Materials Science: Materials in Medicine</i> , 2016 , 27, 28 Switching biological functionalities of biointerfaces via dynamic covalent bonds. <i>Journal of</i>	2.4 7.3 6.3 7.3 4.5	30 51 17 34 24

125	Heparin-mimicking polyethersulfone membranes Themocompatibility, cytocompatibility, antifouling and antibacterial properties. <i>Journal of Membrane Science</i> , 2016 , 498, 135-146	9.6	58
124	Fabrication and cytocompatibility evaluation for blood-compatible polyethersulfone membrane modified by a synthesized poly (vinyl pyrrolidone)-block-poly (acrylate-graft-poly(methyl methacrylate))-block-poly-(vinyl pyrrolidone). <i>Polymers for Advanced Technologies</i> , 2016 , 27, 591-596	3.2	11
123	Prenatal developmental safety of functional polyurethanes for cardiovascular implants. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2016 , 104, 606-14	3.5	4
122	Dynamic Covalent Bond-Assisted Anchor of PEG Brushes on Cationic Surfaces with Antibacterial and Antithrombotic Dual Capabilities. <i>Advanced Materials Interfaces</i> , 2016 , 3, 1500473	4.6	16
121	Kevlar based nanofibrous particles as robust, effective and recyclable absorbents for water purification. <i>Journal of Hazardous Materials</i> , 2016 , 318, 255-265	12.8	58
120	Highly hemo-compatible, mechanically strong, and conductive dual cross-linked polymer hydrogels. Journal of Materials Chemistry B, 2016 , 4, 8016-8024	7-3	26
119	Zwitterionic polymer functionalization of polysulfone membrane with improved antifouling property and blood compatibility by combination of ATRP and click chemistry. <i>Acta Biomaterialia</i> , 2016 , 40, 162-171	10.8	64
118	Mussel-Inspired Antibacterial and Biocompatible Silver-Carbon Nanotube Composites: Green and Universal Nanointerfacial Functionalization. <i>Langmuir</i> , 2016 , 32, 5955-65	4	31
117	A recyclable and regenerable magnetic chitosan absorbent for dye uptake. <i>Carbohydrate Polymers</i> , 2016 , 150, 201-8	10.3	40
116	A versatile approach towards multi-functional surfaces via covalently attaching hydrogel thin layers. <i>Journal of Colloid and Interface Science</i> , 2016 , 484, 60-69	9.3	32
115	Nanofibrous polymeric beads from aramid fibers for efficient bilirubin removal. <i>Biomaterials Science</i> , 2016 , 4, 1392-401	7.4	33
114	In Situ Synthesis of Magnetic Field-Responsive Hemicellulose Hydrogels for Drug Delivery. <i>Biomacromolecules</i> , 2015 , 16, 2522-8	6.9	112
113	Redox-responsive polymeric membranes via supermolecular host@uest interactions. <i>Journal of Membrane Science</i> , 2015 , 480, 139-152	9.6	10
112	Post-crosslinking towards stimuli-responsive sodium alginate beads for the removal of dye and heavy metals. <i>Carbohydrate Polymers</i> , 2015 , 133, 587-95	10.3	101
111	One-pot cross-linked copolymerization for the construction of robust antifouling and antibacterial composite membranes. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 4170-4180	7.3	46
110	Robust, highly elastic and bioactive heparin-mimetic hydrogels. <i>Polymer Chemistry</i> , 2015 , 6, 7893-7901	4.9	24
109	Interfacial Self-Assembly of Heparin-Mimetic Multilayer on Membrane Substrate as Effective Antithrombotic, Endothelialization, and Antibacterial Coating. <i>ACS Biomaterials Science and Engineering</i> , 2015 , 1, 1183-1193	5.5	28
108	Bionic design for anticoagulant surface via synthesized biological macromolecules with heparin-like chains. <i>RSC Advances</i> , 2015 , 5, 58032-58040	3.7	9

107	Improved antifouling properties and blood compatibility of 3-methacryloxypropyl trimethoxysilane Ibased zwitterionic copolymer modified composite membranes via in situ post-crosslinking copolymerization. <i>RSC Advances</i> , 2015 , 5, 23229-23238	3.7	7
106	Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate. <i>Langmuir</i> , 2015 , 31, 9665-74	4	42
105	Substrate-Independent Robust and Heparin-Mimetic Hydrogel Thin Film Coating via Combined LbL Self-Assembly and Mussel-Inspired Post-Cross-linking. <i>ACS Applied Materials & Combined Loss</i> , 7, 26050-62	9.5	70
104	Layer by layer assembly of sulfonic poly(ether sulfone) as heparin-mimicking coatings: scalable fabrication of super-hemocompatible and antibacterial membranes. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 1391-1404	7.3	50
103	Excellent biocompatible polymeric membranes prepared via layer-by-layer self-assembly. <i>Journal of Applied Polymer Science</i> , 2015 , 132,	2.9	9
102	Zwitterionic glycosyl modified polyethersulfone membranes with enhanced anti-fouling property and blood compatibility. <i>Journal of Colloid and Interface Science</i> , 2015 , 443, 36-44	9.3	46
101	Ionic-strength-sensitive polyethersulfone membrane with improved anti-fouling property modified by zwitterionic polymer via in situ cross-linked polymerization. <i>Journal of Membrane Science</i> , 2015 , 476, 234-242	9.6	62
100	Antifouling and blood-compatible poly(ether sulfone) membranes modified by zwitterionic copolymers via In situ crosslinked copolymerization. <i>Journal of Applied Polymer Science</i> , 2015 , 132, n/a-r	n∕ä ⁹	10
99	Novel heparin-mimicking polymer brush grafted carbon nanotube/PES composite membranes for safe and efficient blood purification. <i>Journal of Membrane Science</i> , 2015 , 475, 455-468	9.6	114
98	An in situ crosslinking approach towards chitosan-based semi-IPN hybrid particles for versatile adsorptions of toxins. <i>RSC Advances</i> , 2015 , 5, 51631-51641	3.7	12
97	Ag-nanogel blended polymeric membranes with antifouling, hemocompatible and bactericidal capabilities. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 9295-9304	7.3	32
96	Graphene oxide-based polymeric membranes for broad water pollutant removal. <i>RSC Advances</i> , 2015 , 5, 100651-100662	3.7	30
95	Graphene oxide based heparin-mimicking and hemocompatible polymeric hydrogels for versatile biomedical applications. <i>Journal of Materials Chemistry B</i> , 2015 , 3, 592-602	7.3	67
94	In situ cross-linking of stimuli-responsive hemicellulose microgels during spray drying. <i>ACS Applied Materials & Discrete Amp; Interfaces</i> , 2015 , 7, 4202-15	9.5	39
93	Nanofibrous heparin and heparin-mimicking multilayers as highly effective endothelialization and antithrombogenic coatings. <i>Biomacromolecules</i> , 2015 , 16, 992-1001	6.9	64
92	From commodity polymers to functional polymers. <i>Scientific Reports</i> , 2014 , 4, 4604	4.9	29
91	Surface modification of poly(ether sulfone) membrane with a synthesized negatively charged copolymer. <i>Langmuir</i> , 2014 , 30, 13622-30	4	17
90	Mussel-inspired self-coating at macro-interface with improved biocompatibility and bioactivity via dopamine grafted heparin-like polymers and heparin. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 363-375	7.3	149

89	Light-Triggered Switching of Reversible and Alterable Biofunctionality via ECyclodextrin/Azobenzene-Based Host@uest Interaction. ACS Macro Letters, 2014, 3, 1130-1133	6.6	56
88	Toward a highly hemocompatible membrane for blood purification via a physical blend of miscible comb-like amphiphilic copolymers. <i>Biomaterials Science</i> , 2014 , 2, 538-547	7.4	33
87	Heparin-mimicking multilayer coating on polymeric membrane via LbL assembly of cyclodextrin-based supramolecules. <i>ACS Applied Materials & District Research</i> , 2014, 6, 21603-14	9.5	68
86	Surface-engineered nanogel assemblies with integrated blood compatibility, cell proliferation and antibacterial property: towards multifunctional biomedical membranes. <i>Polymer Chemistry</i> , 2014 , 5, 590	o d -891	9 ⁶⁷
85	Self-assembled 3D biocompatible and bioactive layer at the macro-interface via graphene-based supermolecules. <i>Polymer Chemistry</i> , 2014 , 5, 3563	4.9	49
84	Hemocompatibility and ultrafiltration performance of surface-functionalized polyethersulfone membrane by blending comb-like amphiphilic block copolymer. <i>Journal of Membrane Science</i> , 2014 , 471, 319-327	9.6	46
83	Graphene oxide interpenetrated polymeric composite hydrogels as highly effective adsorbents for water treatment. <i>RSC Advances</i> , 2014 , 4, 42346-42357	3.7	38
82	Facile chemical modification of polysulfone membrane with improved hydrophilicity and blood compatibility. <i>Materials Letters</i> , 2014 , 137, 192-195	3.3	17
81	High efficient protocol for the modification of polyethersulfone membranes with anticoagulant and antifouling properties via in situ cross-linked copolymerization. <i>Journal of Membrane Science</i> , 2014 , 468, 172-183	9.6	8o
80	Blood compatibility comparison for polysulfone membranes modified by grafting block and random zwitterionic copolymers via surface-initiated ATRP. <i>Journal of Colloid and Interface Science</i> , 2014 , 432, 47-56	9.3	51
79	Toward highly blood compatible hemodialysis membranes via blending with heparin-mimicking polyurethane: Study in vitro and in vivo. <i>Journal of Membrane Science</i> , 2014 , 470, 90-101	9.6	71
78	In Situ Cross-Linked Polymerization toward Poly(ether sulfone)/Poly(sodium acrylate) Hybrid Particles for the Removal of Environmental Toxins. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 14084-14093	3.9	20
77	Toward robust pH-responsive and anti-fouling composite membranes via one-pot in-situ cross-linked copolymerization. <i>Desalination</i> , 2014 , 349, 80-93	10.3	36
76	Blood activation and compatibility on single-molecular-layer biointerfaces. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 4911-4921	7.3	47
75	Progress in heparin and heparin-like/mimicking polymer-functionalized biomedical membranes. Journal of Materials Chemistry B, 2014 , 2, 7649-7672	7.3	127
74	Bionic design for surface optimization combining hydrophilic and negative charged biological macromolecules. <i>International Journal of Biological Macromolecules</i> , 2014 , 67, 260-9	7.9	7
73	Covalent deposition of zwitterionic polymer and citric acid by click chemistry-enabled layer-by-layer assembly for improving the blood compatibility of polysulfone membrane. <i>Langmuir</i> , 2014 , 30, 5115-25	4	66
72	Insights into the surface property and blood compatibility of polyethersulfone/polyvinylpyrrolidone composite membranes: toward high-performance hemodialyzer. <i>Polymers for Advanced Technologies</i> , 2014 , 25, 851-860	3.2	18

71	Catechol chemistry inspired approach to construct self-cross-linked polymer nanolayers as versatile biointerfaces. <i>Langmuir</i> , 2014 , 30, 14905-15	4	47
70	Molecularly imprinted polyethersulfone membranes for the sieving, binding and recognition of bisphenol A. <i>Desalination and Water Treatment</i> , 2014 , 52, 5781-5789		5
69	Biologically inspired membrane design with a heparin-like interface: prolonged blood coagulation, inhibited complement activation, and bio-artificial liver related cell proliferation. <i>Biomaterials Science</i> , 2014 , 2, 98-109	7.4	72
68	A simple method to prepare modified polyethersulfone membrane with improved hydrophilic surface by one-pot: The effect of hydrophobic segment length and molecular weight of copolymers. <i>Materials Science and Engineering C</i> , 2014 , 37, 68-75	8.3	20
67	Poly(ether sulfone) membranes with photo-responsive permeability. <i>Journal of Membrane Science</i> , 2014 , 455, 357-367	9.6	17
66	Toward 3D graphene oxide gels based adsorbents for high-efficient water treatment via the promotion of biopolymers. <i>Journal of Hazardous Materials</i> , 2013 , 263 Pt 2, 467-78	12.8	159
65	One-pot synthesized poly(vinyl pyrrolidone-co-methyl methacrylate-co-acrylic acid) blended with poly(ether sulfone) to prepare blood-compatible membranes. <i>Journal of Applied Polymer Science</i> , 2013 , 130, n/a-n/a	2.9	1
64	Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. <i>Journal of Membrane Science</i> , 2013 , 446, 79-91	9.6	235
63	Modification of polyethersulfone membranes 🖪 review of methods. <i>Progress in Materials Science</i> , 2013 , 58, 76-150	42.2	591
62	Biopolymer functionalized reduced graphene oxide with enhanced biocompatibility via mussel inspired coatings/anchors. <i>Journal of Materials Chemistry B</i> , 2013 , 1, 265-275	7.3	213
61	Blood compatibility of polyethersulfone membrane by blending a sulfated derivative of chitosan. <i>Carbohydrate Polymers</i> , 2013 , 95, 64-71	10.3	44
60	Preparation and characterization of sulfonated polyethersulfone membranes by a facile approach. <i>European Polymer Journal</i> , 2013 , 49, 738-751	5.2	43
59	Polyethersulfone enwrapped graphene oxide porous particles for water treatment. <i>Chemical Engineering Journal</i> , 2013 , 215-216, 72-81	14.7	98
58	Preparation and characterization of pH- and thermo-sensitive polyethersulfone hollow fiber membranes modified with P(NIPAAm-MAA-MMA) terpolymer. <i>Desalination</i> , 2013 , 309, 1-10	10.3	24
57	Preparation and Characterization of pH-Sensitive Polyethersulfone Membranes Blended with Poly(methyl methacrylate-co-maleic anhydride) Copolymer. <i>Separation Science and Technology</i> , 2013 , 48, 1941-1953	2.5	9
56	Toward safe, efficient and multifunctional 3D blood-contact adsorbents engineered by biopolymers/graphene oxide gels. <i>RSC Advances</i> , 2013 , 3, 22120	3.7	36
55	Preparation and Characterization of Poly(Acrylonitrile-co-Maleic Anhydride) Copolymer Modified Polyethersulfone Membranes. <i>Separation Science and Technology</i> , 2013 , 48, 1627-1635	2.5	8
54	Modification of polyethersulfone membranes using terpolymers engineered and integrated antifouling and anticoagulant properties. <i>Polymers for Advanced Technologies</i> , 2013 , 24, 1040-1050	3.2	26

(2011-2013)

53	Molecular Imprinted Polysulfone Membranes for the Sieving, Binding, and Recognition of Bisphenol A. International Journal of Polymeric Materials and Polymeric Biomaterials, 2013 , 62, 17-22	3	3
52	Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. <i>Journal of Membrane Science</i> , 2012 , 405-406, 261-274	9.6	118
51	Heparin-like macromolecules for the modification of anticoagulant biomaterials. <i>Macromolecular Bioscience</i> , 2012 , 12, 116-25	5.5	83
50	Effect of membrane pore size on the pH-sensitivity of polyethersulfone hollow fiber ultrafiltration membrane. <i>Journal of Applied Polymer Science</i> , 2012 , 123, 2320-2329	2.9	10
49	Clinical evaluation of polyethersulfone high-flux hemodialysis membrane compared to other membranes. <i>Journal of Applied Polymer Science</i> , 2012 , 124, E91-E98	2.9	6
48	General and biomimetic approach to biopolymer-functionalized graphene oxide nanosheet through adhesive dopamine. <i>Biomacromolecules</i> , 2012 , 13, 4236-46	6.9	127
47	The hydrodynamic permeability and surface property of polyethersulfone ultrafiltration membranes with mussel-inspired polydopamine coatings. <i>Journal of Membrane Science</i> , 2012 , 417-418, 228-236	9.6	223
46	Improved blood compatibility of polyethersulfone membrane with a hydrophilic and anionic surface. <i>Colloids and Surfaces B: Biointerfaces</i> , 2012 , 100, 116-25	6	86
45	Heparin-like surface modification of polyethersulfone membrane and its biocompatibility. <i>Journal of Colloid and Interface Science</i> , 2012 , 386, 428-40	9.3	60
44	Comparison of surface segregation and anticoagulant property in block copolymer blended evaporation and phase inversion membranes. <i>Surface and Interface Analysis</i> , 2012 , 44, 819-824	1.5	17
43	Protein-grafted carboxylic poly(ether sulfone) membranes: Preparation and characterization. <i>Journal of Applied Polymer Science</i> , 2012 , 126, 1277-1290	2.9	12
42	Poly (vinylpyrrolidone-co-acrylonitrile-co-vinylpyrrolidone) modified polyethersulfone hollow fiber membranes with improved blood compatibility. <i>Fibers and Polymers</i> , 2012 , 13, 269-276	2	11
41	Polymeric Particles for the Removal of Endocrine Disruptors. <i>Separation and Purification Reviews</i> , 2011 , 40, 312-337	7.3	12
40	Biocompatibility of modified polyethersulfone membranes by blending an amphiphilic triblock co-polymer of poly(vinyl pyrrolidone). <i>Acta Biomaterialia</i> , 2011 , 7, 3370-81	10.8	168
39	Preparation, characterization, and testing of a composite membrane with pH sensitivity. <i>Journal of Applied Polymer Science</i> , 2011 , 119, 3607-3614	2.9	5
38	Electrosprayed porous microspheres for the removal of endocrine disruptors. <i>Journal of Applied Polymer Science</i> , 2011 , 120, 2648-2653	2.9	14
37	Polyethersulfone nanofibers for the removal of endocrine disruptors. <i>Desalination and Water Treatment</i> , 2011 , 29, 158-163		8
36	Preparation of Surface Molecularly Imprinted Poly(dopamine) Film for 4-Hydroxybenzoic Acid (4-BA) Recognition by One-Step Method. <i>Analytical Letters</i> , 2011 , 44, 1796-1806	2.2	11

35	Preparation and characterization of functional carboxylic polyethersulfone membrane. <i>Journal of Membrane Science</i> , 2011 , 374, 93-101	9.6	71
34	Modification of polyethersulfone membrane by blending semi-interpenetrating network polymeric nanoparticles. <i>Journal of Membrane Science</i> , 2011 , 369, 258-266	9.6	114
33	Polymeric pH-sensitive membranes review. <i>Progress in Polymer Science</i> , 2011 , 36, 1499-1520	29.6	207
32	Molecularly Imprinted Electrospinning Polyethersulfone Nano-Scale Fibers for the Binding and Recognition of Bisphenol A. <i>Separation Science and Technology</i> , 2011 , 46, 1615-1620	2.5	15
31	Self-Assembly Molecularly Imprinted Nanofiber for 4-HA Recognition. <i>Analytical Letters</i> , 2010 , 43, 2790	-227 <u>/</u> 97	13
30	Oxidant-induced dopamine polymerization for multifunctional coatings. <i>Polymer Chemistry</i> , 2010 , 1, 143	B Q .9	548
29	Modification of a polyethersulfone matrix by grafting functional groups and the research of biomedical performance. <i>Journal of Biomaterials Science, Polymer Edition</i> , 2010 , 21, 1559-72	3.5	28
28	Poly(Acrylic Acid-co-Acrylonitrile) Copolymer Modified Polyethersulfone Hollow Fiber Membrane with pH-Sensitivity. <i>Separation Science and Technology</i> , 2010 , 45, 2017-2027	2.5	22
27	Synthesis of Stimuli-responsive Nanoparticles by Solution Polymerization. <i>Journal of Macromolecular Science - Pure and Applied Chemistry</i> , 2010 , 48, 135-141	2.2	
26	Surface modification of polyethersulfone membrane by grafting bovine serum albumin. <i>Fibers and Polymers</i> , 2010 , 11, 960-966	2	18
25	Preparation and characterization of poly(acrylonitrile-acrylic acid-N-vinyl pyrrolidinone) terpolymer blended polyethersulfone membranes. <i>Journal of Membrane Science</i> , 2010 , 349, 56-64	9.6	94
24	Preparation and characterization of sandwich-structure polyethersulfone membrane with pH sensitivity. <i>Desalination and Water Treatment</i> , 2009 , 8, 163-170		14
23	Molecularly imprinted polyethersulfone microfibers for the binding and recognition of bisphenol A. <i>Journal of Applied Polymer Science</i> , 2009 , 114, 4036-4041	2.9	17
22	Preparation, characterization and application of functional polyethersulfone membranes blended with poly (acrylic acid) gels. <i>Journal of Membrane Science</i> , 2009 , 337, 266-273	9.6	76
21	BSA-modified polyethersulfone membrane: preparation, characterization and biocompatibility. Journal of Biomaterials Science, Polymer Edition, 2009, 20, 377-97	3.5	46
20	Polyethersulfone-Activated Carbon Hybrid Particles for Phenobarbital Removal. <i>Separation Science and Technology</i> , 2009 , 45, 142-147	2.5	2
19	One-Pot Synthesis of Hydrophilic Molecularly Imprinted Nanoparticles. <i>Macromolecules</i> , 2009 , 42, 8739-	-8 , 7 ,4 6	109
18	Polyethersulfone-Modified Montmorillonite Hybrid Beads for the Removal of Bisphenol A. Separation Science and Technology 2008, 43, 1404-1420	2.5	8

LIST OF PUBLICATIONS

17	Evaluation of polyethersulfone highflux hemodialysis membrane in vitro and in vivo. <i>Journal of Materials Science: Materials in Medicine</i> , 2008 , 19, 745-51	4.5	75
16	Effect of the template molecules and nonsolvent additives on the recognition property of molecular imprinted polyethersulfone particles. <i>Journal of Applied Polymer Science</i> , 2008 , 108, 3859-38	66 ^{.9}	18
15	Comparison of two approaches to grafting hydrophilic polymer chains onto polysulfone films. Journal of Applied Polymer Science, 2007 , 103, 3818-3826	2.9	8
14	Poly(ether sulfone)/activated carbon hybrid beads for creatinine adsorption. <i>Journal of Applied Polymer Science</i> , 2007 , 103, 1085-1092	2.9	28
13	Preparation and selective binding characterization of Bisphenol A imprinted polyethersulfone particles. <i>Journal of Applied Polymer Science</i> , 2007 , 106, 2791-2799	2.9	13
12	Polysulfone-Activated Carbon Hybrid Particles for the Removal of BPA. <i>Separation Science and Technology</i> , 2006 , 41, 515-529	2.5	16
11	DNA-Modified Polysulphone Microspheres for Endocrine Disruptors and Heavy Metal Ions Removal. <i>Adsorption Science and Technology</i> , 2005 , 23, 387-398	3.6	4
10	Molecularly imprinted polyethersulfone microspheres for the binding and recognition of bisphenol A. <i>Analytica Chimica Acta</i> , 2005 , 546, 30-36	6.6	62
9	Preparation of DNA-encapsulated polyethersulfone hollow microspheres for organic compounds and heavy metal ions removal. <i>Desalination</i> , 2005 , 175, 297-304	10.3	19
8	DNA-loaded porous polyethersulfone particles for environmental applications I. preparation. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 1668-1673	2.9	17
7	DNA-loaded porous polyethersulfone particles for environmental applications II. Utilization. <i>Journal of Applied Polymer Science</i> , 2005 , 98, 1674-1678	2.9	11
6	Characterization of DNA-loaded porous polyethersulfone particles prepared by phase inversion technique. <i>Colloid Journal</i> , 2005 , 67, 140-145	1.1	8
5	DNA-Loaded PSf Microspheres Used in Environmental Application. <i>Separation Science and Technology</i> , 2004 , 39, 3043-3055	2.5	13
4	Preparation of DNA-loaded polysulfone microspheres by liquid-liquid phase separation and its functional utilization. <i>Journal of Colloid and Interface Science</i> , 2004 , 275, 470-6	9.3	43
3	Performance evaluation of plasma fractionation membrane. <i>Therapeutic Apheresis and Dialysis</i> , 2002 , 6, 86-8		3
2	Construction of dual-carbon-confined metal sulfide nanocrystals via bio-mimetic reactors enabling superior Fenton-like catalysis. <i>Journal of Materials Chemistry A</i> ,	13	3
1	High-Valence Transition Metal Modified FeNiV Oxides Anchored on Carbon Fiber Cloth for Efficient Oxygen Evolution Catalysis. <i>Advanced Fiber Materials</i> ,1	10.9	2