
Kristopher A Sarosiek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4606690/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nature Reviews Molecular Cell Biology, 2019, 20, 175-193.	16.1	1,185
2	Pretreatment Mitochondrial Priming Correlates with Clinical Response to Cytotoxic Chemotherapy. Science, 2011, 334, 1129-1133.	6.0	502
3	Drug-Induced Death Signaling Strategy Rapidly Predicts Cancer Response to Chemotherapy. Cell, 2015, 160, 977-989.	13.5	295
4	Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nature Communications, 2016, 7, 11589.	5.8	285
5	Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell, 2018, 175, 101-116.e25.	13.5	234
6	Differentiation stage–specific expression of microRNAs in B lymphocytes and diffuse large B-cell lymphomas. Blood, 2009, 113, 3754-3764.	0.6	226
7	Stabilization of mutant BRCA1 protein confers PARP inhibitor and platinum resistance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 17041-17046.	3.3	225
8	CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Reports, 2016, 17, 2367-2381.	2.9	215
9	BID Preferentially Activates BAK while BIM Preferentially Activates BAX, Affecting Chemotherapy Response. Molecular Cell, 2013, 51, 751-765.	4.5	200
10	Developmental Regulation of Mitochondrial Apoptosis by c-Myc Governs Age- and Tissue-Specific Sensitivity to Cancer Therapeutics. Cancer Cell, 2017, 31, 142-156.	7.7	190
11	Mitochondria: gatekeepers of response to chemotherapy. Trends in Cell Biology, 2013, 23, 612-619.	3.6	140
12	PTP1B is a negative regulator of interleukin 4–induced STAT6 signaling. Blood, 2008, 112, 4098-4108.	0.6	118
13	Efficacy of bortezomib in a direct xenograft model of primary effusion lymphoma. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13069-13074.	3.3	79
14	T-Cell Protein Tyrosine Phosphatase, Distinctively Expressed in Activated-B-Cell-Like Diffuse Large B-Cell Lymphomas, Is the Nuclear Phosphatase of STAT6. Molecular and Cellular Biology, 2007, 27, 2166-2179.	1.1	78
15	Directly targeting the mitochondrial pathway of apoptosis for cancer therapy using <scp>BH</scp> 3 mimetics – recent successes, current challenges and future promise. FEBS Journal, 2016, 283, 3523-3533.	2.2	78
16	Novel IL-21 signaling pathway up-regulates c-Myc and induces apoptosis of diffuse large B-cell lymphomas. Blood, 2010, 115, 570-580.	0.6	73
17	Exploiting MCL1 Dependency with Combination MEK + MCL1 Inhibitors Leads to Induction of Apoptosis and Tumor Regression in <i>KRAS</i> -Mutant Non–Small Cell Lung Cancer. Cancer Discovery, 2018, 8, 1598-1613.	7.7	71
18	Failure to Induce Apoptosis via BCL-2 Family Proteins Underlies Lack of Efficacy of Combined MEK and PI3K Inhibitors for KRAS-Mutant Lung Cancers. Cancer Research, 2014, 74, 3146-3156.	0.4	69

KRISTOPHER A SAROSIEK

#	Article	IF	CITATIONS
19	HSF1 phase transition mediates stress adaptation and cell fate decisions. Nature Cell Biology, 2020, 22, 151-158.	4.6	67
20	RAS signaling promotes resistance to JAK inhibitors by suppressing BAD-mediated apoptosis. Science Signaling, 2014, 7, ra122.	1.6	65
21	Radiation-Induced Cardiovascular Toxicity: Mechanisms, Prevention, and Treatment. Current Treatment Options in Cardiovascular Medicine, 2018, 20, 31.	0.4	65
22	Age-dependent regulation of SARS-CoV-2 cell entry genes and cell death programs correlates with COVID-19 severity. Science Advances, 2021, 7, .	4.7	49
23	Safer-by-design flame-sprayed silicon dioxide nanoparticles: the role of silanol content on ROS generation, surface activity and cytotoxicity. Particle and Fibre Toxicology, 2019, 16, 40.	2.8	48
24	Tight Sequestration of BH3 Proteins by BCL-xL at Subcellular Membranes Contributes to Apoptotic Resistance. Cell Reports, 2016, 17, 3347-3358.	2.9	44
25	BCL-XL directly modulates RAS signalling to favour cancer cell stemness. Nature Communications, 2017, 8, 1123.	5.8	43
26	Diminished apoptotic priming and ATM signalling confer a survival advantage onto aged haematopoietic stem cells in response to DNA damage. Nature Cell Biology, 2018, 20, 413-421.	4.6	41
27	Mechanisms of Lymphoma Clearance Induced by High-Dose Alkylating Agents. Cancer Discovery, 2019, 9, 944-961.	7.7	36
28	BH3 Profiling: A Functional Assay to Measure Apoptotic Priming and Dependencies. Methods in Molecular Biology, 2019, 1877, 61-76.	0.4	36
29	Direct and immune-mediated cytotoxicity of interleukin-21 contributes to antitumor effects in mantle cell lymphoma. Blood, 2015, 126, 1555-1564.	0.6	31
30	Pooled Genomic Screens Identify Anti-apoptotic Genes as Targetable Mediators of Chemotherapy Resistance in Ovarian Cancer. Molecular Cancer Research, 2019, 17, 2281-2293.	1.5	29
31	HGAL, a germinal center specific protein, decreases lymphoma cell motility by modulation of the RhoA signaling pathway. Blood, 2010, 116, 5217-5227.	0.6	28
32	T Cells and Regulated Cell Death. International Review of Cell and Molecular Biology, 2019, 342, 27-71.	1.6	27
33	Interleukin 21 – its potential role in the therapy of B-cell lymphomas. Leukemia and Lymphoma, 2017, 58, 17-29.	0.6	20
34	Inhibition of MAPKinase pathway sensitizes thyroid cancer cells to ABT-737 induced apoptosis. Cancer Letters, 2017, 395, 1-10.	3.2	16
35	Interleukinâ€4 distinctively modifies responses of germinal centreâ€like and activated Bâ€cellâ€like diffuse large Bâ€cell lymphomas to immunoâ€chemotherapy. British Journal of Haematology, 2009, 147, 308-318.	1.2	10
36	Metabolic perturbations sensitize triple-negative breast cancers to apoptosis induced by BH3 mimetics. Science Signaling, 2021, 14, .	1.6	10

#	Article	IF	CITATIONS
37	Short-term exposure to ambient particle gamma radioactivity is associated with increased risk for all-cause non-accidental and cardiovascular mortality. Science of the Total Environment, 2020, 721, 137793.	3.9	7
38	A Mesenchymal Tumor Cell State Confers Increased Dependency on the BCL-XL Antiapoptotic Protein in Kidney Cancer. Clinical Cancer Research, 2022, 28, 4689-4701.	3.2	5
39	Interleukin-21-Induced Apoptosis and Cell Death of Diffuse Large B-Cell Lymphoma (DLBCL) Cell Lines and Primary Tumors Are Associated with an Induction of Bim Blood, 2006, 108, 2503-2503.	0.6	2
40	Interleukin-21 Induces Cell Cycle Arrest and Apoptosis of Diffuse Large B-Cell Lymphomas (DLBCL) Via Activation of STAT3 and Upregulation of C-Myc. Blood, 2008, 112, 601-601.	0.6	2
41	Abstract 4728: Apoptotic priming is regulated by a developmental program and predisposes children to therapy-induced toxicity. Cancer Research, 2015, 75, 4728-4728.	0.4	1
42	Epigenetics make transient states of cancer therapy resistance permanent. Science Translational Medicine, 2017, 9, .	5.8	1
43	Abstract 982:LKB1loss rewires stress signaling-induced apoptotic protein dynamics and sensitizesKRAS-mutant non-small cell lung cancers to combined MAPK + MCL-1 blockade. , 2021, , .		0
44	HGAL, a Lymphoma Prognostic Biomarker, Regulates Lymphocyte and Lymphoma Cell Motility by Modulation of RhoA Signaling Pathway Blood, 2009, 114, 316-316.	0.6	0
45	Mitochondrial Apoptotic Priming Measured by BH3 Profiling Regulates Clinical Response to Chemotherapy in Myeloma and Acute Lymphoblastic Leukemia and Explains Therapeutic Index. Blood, 2011, 118, 1442-1442.	0.6	0
46	Double trouble for CML. Science Translational Medicine, 2017, 9, .	5.8	0
47	Chemotherapy-treated cells go up in flames. Science Translational Medicine, 2017, 9, .	5.8	0
48	Meta-screen for cancer dependencies. Science Translational Medicine, 2017, 9, .	5.8	0
49	Blocking cell death to enhance cell death. Science Translational Medicine, 2017, 9, .	5.8	0
50	Searching for the ovarian cancer cell of origin. Science Translational Medicine, 2017, 9, .	5.8	0
51	Myc heals all (tumor) wounds. Science Translational Medicine, 2017, 9, .	5.8	0
52	Alkylating Agent-Induced ER Stress Overcomes Microenvironmental Resistance to Lymphoma Therapy. SSRN Electronic Journal, 0, , .	0.4	0
53	p53: Jack of all (cell death) trades, master of all. Science Translational Medicine, 2018, 10, .	5.8	0
54	Clonal Plasma Cells in AL Amyloidosis Are Dependent on Anti-Apoptotic BCL-2 Family Proteins. Blood, 2018, 132, 2654-2654.	0.6	0

#	Article	IF	CITATIONS
55	Desialylation and Apoptosis Crosstalk to Modulate Platelet Clearance. Blood, 2019, 134, 1055-1055.	0.6	Ο