
Adrian Rocha

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4606551/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	2.2	199
2	An eddy covariance mesonet to measure the effect of forest age on land-atmosphere exchange. Global Change Biology, 2006, 12, 2146-2162.	4.2	169
3	Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 2009, 149, 1560-1563.	1.9	151
4	Reviews and syntheses: Changing ecosystem influences on soil thermal regimes in northern high-latitude permafrost regions. Biogeosciences, 2018, 15, 5287-5313.	1.3	143
5	Evaluation of Moderate-resolution Imaging Spectroradiometer (MODIS) snow albedo product (MCD43A) over tundra. Remote Sensing of Environment, 2012, 117, 264-280.	4.6	137
6	Arctic tundra fires: natural variability and responses to climate change. Frontiers in Ecology and the Environment, 2015, 13, 369-377.	1.9	135
7	The footprint of Alaskan tundra fires during the past half-century: implications for surface properties and radiative forcing. Environmental Research Letters, 2012, 7, 044039.	2.2	98
8	On linking interannual tree ring variability with observations of whole-forest CO2 flux. Global Change Biology, 2006, 12, 1378-1389.	4.2	89
9	Postfire energy exchange in arctic tundra: the importance and climatic implications of burn severity. Global Change Biology, 2011, 17, 2831-2841.	4.2	87
10	Burn severity influences postfire CO ₂ exchange in arctic tundra. , 2011, 21, 477-489.		67
11	Identification of unrecognized tundra fire events on the north slope of Alaska. Journal of Geophysical Research G: Biogeosciences, 2013, 118, 1334-1344.	1.3	58
12	Vegetation shifts observed in arctic tundra 17 years after fire. Remote Sensing Letters, 2012, 3, 729-736.	0.6	55
13	Contrasting soil thermal responses to fire in Alaskan tundra and boreal forest. Journal of Geophysical Research F: Earth Surface, 2015, 120, 363-378.	1.0	53
14	Latent heat exchange in the boreal and arctic biomes. Global Change Biology, 2014, 20, 3439-3456.	4.2	52
15	Scaling an Instantaneous Model of Tundra NEE to the Arctic Landscape. Ecosystems, 2011, 14, 76-93.	1.6	39
16	Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environmental Research Letters, 2021, 16, 015001.	2.2	39
17	Active layer thickness as a function of soil water content. Environmental Research Letters, 2021, 16, 055028.	2.2	35
18	Modeling carbon–nutrient interactions during the early recovery of tundra after fire. Ecological Applications, 2015, 25, 1640-1652.	1.8	32

Adrian Rocha

#	Article	IF	CITATIONS
19	Tundra wildfire triggers sustained lateral nutrient loss in Alaskan Arctic. Global Change Biology, 2021, 27, 1408-1430.	4.2	29
20	C–N–P interactions control climate driven changes in regional patterns of C storage on the North Slope of Alaska. Landscape Ecology, 2016, 31, 195-213.	1.9	28
21	Standing litter as a driver of interannual CO ₂ exchange variability in a freshwater marsh. Journal of Geophysical Research, 2008, 113, .	3.3	27
22	Groundwater Controls on Postfire Permafrost Thaw: Water and Energy Balance Effects. Journal of Geophysical Research F: Earth Surface, 2018, 123, 2677-2694.	1.0	26
23	Understanding burn severity sensing in Arctic tundra: exploring vegetation indices, suboptimal assessment timing and the impact of increasing pixel size. International Journal of Remote Sensing, 2011, 32, 7033-7056.	1.3	23
24	Modeling longâ€ŧerm changes in tundra carbon balance following wildfire, climate change, and potential nutrient addition. Ecological Applications, 2017, 27, 105-117.	1.8	23
25	Soil respiration strongly offsets carbon uptake in Alaska and Northwest Canada. Environmental Research Letters, 2021, 16, 084051.	2.2	23
26	Assessing the spatial variability in peak season CO ₂ exchange characteristics across the Arctic tundra using a light response curve parameterization. Biogeosciences, 2014, 11, 4897-4912.	1.3	20
27	Tracking carbon within the trees. New Phytologist, 2013, 197, 685-686.	3.5	16
28	Differential responses of ecotypes to climate in a ubiquitous Arctic sedge: implications for future ecosystem C cycling. New Phytologist, 2019, 223, 180-192.	3.5	16
29	Plant Uptake Offsets Silica Release From a Large Arctic Tundra Wildfire. Earth's Future, 2019, 7, 1044-1057.	2.4	13
30	Alleviation of nutrient coâ€limitation induces regime shifts in postâ€fire community composition and productivity in Arctic tundra. Global Change Biology, 2021, 27, 3324-3335.	4.2	13
31	A test of functional convergence in carbon fluxes from coupled C and N cycles in Arctic tundra. Ecological Modelling, 2018, 383, 31-40.	1.2	10
32	Solar position confounds the relationship between ecosystem function and vegetation indices derived from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 2021, 298-299, 108291.	1.9	10
33	Is arctic greening consistent with the ecology of tundra? Lessons from an ecologically informed mass balance model. Environmental Research Letters, 2018, 13, 125007.	2.2	9
34	Synergies Among Environmental Science Research and Monitoring Networks: A Research Agenda. Earth's Future, 2021, 9, e2020EF001631.	2.4	5
35	Range shifts in a foundation sedge potentially induce large Arctic ecosystem carbon losses and gains. Environmental Research Letters, 2022, 17, 045024.	2.2	5
36	Limited overall impacts of ectomycorrhizal inoculation on recruitment of boreal trees into Arctic tundra following wildfire belie species-specific responses. PLoS ONE, 2020, 15, e0235932.	1.1	4

Adrian Rocha

#	Article	IF	CITATIONS
37	Surface moisture budget of tundra and boreal ecosystems in Alaska: Variations and drivers. Polar Science, 2021, 29, 100685.	0.5	4
38	Small herbivores with big impacts: Tundra voles (<i>Microtus oeconomus</i>) alter postâ€fire ecosystem dynamics. Ecology, 2022, 103, e3689.	1.5	4
39	An Open-Source, Durable, and Low-Cost Alternative to Commercially Available Soil Temperature Data Loggers. Sensors, 2022, 22, 148.	2.1	0