Chun-xiang Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4606216/publications.pdf

Version: 2024-02-01

114 papers 2,100 citations

361296 20 h-index 276775 41 g-index

114 all docs

114 docs citations

times ranked

114

1867 citing authors

#	Article	IF	CITATIONS
1	Titanium alloy production technology, market prospects and industry development. Materials & Design, 2011, 32, 1684-1691.	5.1	591
2	Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure magnesium for biomedical applications. Corrosion Science, 2010, 52, 2228-2234.	3.0	194
3	Mechanical properties and in vitro biodegradation of newly developed porous Zn scaffolds for biomedical applications. Materials and Design, 2016, 108, 136-144.	3 . 3	82
4	Interfacial electronic modulation of Ni3S2 nanosheet arrays decorated with Au nanoparticles boosts overall water splitting. Applied Catalysis B: Environmental, 2022, 304, 120935.	10.8	80
5	Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials. Materials Letters, 2005, 59, 3144-3148.	1.3	60
6	Microstructure evolution and enhanced mechanical properties of eutectic Al–Si die cast alloy by combined alloying Mg and La. Materials and Design, 2016, 90, 820-828.	3.3	55
7	Fabrication and properties of porous Zn-Ag alloy scaffolds as biodegradable materials. Materials Chemistry and Physics, 2018, 219, 433-443.	2.0	47
8	The microstructure and formation mechanism of core–shell-like TiAl3/Ti2Al20Ce in melt-spun Al–Ti–B–Re grain refiner. Materials Letters, 2012, 85, 153-156.	1.3	41
9	Preparation of in situ Al3Nb-NbB2-NbC/Al inoculant and its effect on microstructures and properties of weldable Al-Cu-Mn alloy. Materials Science & Described Algorian Algorian Science & Described Algorian Processing, 2018, 738, 273-282.	2.6	30
10	Mechanical properties and biodegradation of porous Zn-1Al alloy scaffolds. Materials Letters, 2019, 247, 75-78.	1.3	30
11	Carbon fibers coated with graphene reinforced TiAl alloy composite with high strength and toughness. Scientific Reports, 2018, 8, 2364.	1.6	27
12	Ti–Zr–Fe–Si system amorphous alloys with excellent biocompatibility. Journal of Non-Crystalline Solids, 2008, 354, 3935-3938.	1.5	26
13	Fabrication, microstructure and refining mechanism of in situ CeB6/Al inoculant in aluminum. Materials & Design, 2015, 65, 432-437.	5.1	26
14	Significantly improved particle strengthening of Al–Sc alloy by high Sc composition design and rapid solidification. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140304.	2.6	26
15	Corrosion resistance and calcium–phosphorus precipitation of micro-arc oxidized magnesium for biomedical applications. Applied Surface Science, 2015, 330, 431-438.	3.1	25
16	Enhanced grain refinement of in situ CeB6/Al composite inoculant on pure aluminum by microstructure control. Journal of Alloys and Compounds, 2017, 701, 926-934.	2.8	24
17	Enhanced corrosion resistance of 5083 aluminum alloy by refining with nano-CeB6/Al inoculant. Applied Surface Science, 2019, 484, 403-408.	3.1	24
18	Fabrication and magnetic properties of Sm2Co17 and Sm2Co17/Fe7Co3 magnetic nanowires via AAO templates. Journal of Crystal Growth, 2014, 399, 1-6.	0.7	22

#	Article	IF	CITATIONS
19	Fabrication and properties of novel porous CuAlMn shape memory alloys and polymer/CuAlMn composites. Composites Part A: Applied Science and Manufacturing, 2018, 107, 21-30.	3.8	22
20	Fabrication of in situ AlN-TiN/Al inoculant and its refining efficiency and reinforcing effect on pure aluminum. Journal of Alloys and Compounds, 2013, 547, 5-10.	2.8	21
21	Microstructure of Al-5Ti-1B-1RE nanoribbon and its refining efficiency on as-cast A356 alloys. Journal of Rare Earths, 2013, 31, 313-318.	2.5	21
22	Effect of Mo, Zr, and Y on the high-temperature properties of Al–Cu–Mn alloy. Journal of Materials Research, 2019, 34, 3853-3861.	1.2	21
23	Effect of combined addition of Cu51Zr14 inoculant and Ti element on the microstructure and damping behavior of a Cu-Al-Ni shape memory alloy. Materials Science & Diple Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 743, 606-610.	2.6	21
24	Particle–matrix interface microstructure of in situ TiCp–AlNp/Al composite. Composites Science and Technology, 2012, 72, 1423-1429.	3.8	19
25	Structure and properties of GCr15 modified by multiphase ceramic nanoparticles /Fe-C composite inoculants. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2018, 738, 63-74.	2.6	19
26	Effects of multi-stage aging on the microstructure, domain structure and magnetic properties of Fe-24Cr-12Co-1.5Si ribbon magnets. Journal of Alloys and Compounds, 2017, 694, 103-110.	2.8	18
27	Microstructures and mechanical properties of in-situ CaB6 ceramic particles reinforced Al-Cu-Mn composite. Ceramics International, 2019, 45, 21668-21675.	2.3	17
28	Preparation of in-situ NdB6 nanoparticles and their reinforcement effect on Al–Cu–Mn alloy. Journal of Alloys and Compounds, 2019, 806, 393-400.	2.8	16
29	Microstructural, Mechanical, and Damping Properties of a Cu-Based Shape Memory Alloy Refined by an In Situ LaB6/Al Inoculant. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 2310-2321.	1.1	16
30	Nanoparticles of the superconductor MgB2: structural characterization and in situ study of synthesis kinetics. Acta Materialia, 2004, 52, 5757-5760.	3.8	15
31	Fabrication and magnetic properties of Fe3Co7 alloy nanowire arrays. Journal of Materials Science, 2010, 45, 1523-1527.	1.7	15
32	Microstructure and mechanical properties of TC4 alloy modified and reinforced by TiB+TiN/Ti inoculants ribbons. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 663, 8-16.	2.6	15
33	Interfacial microstructure and nucleating mechanism of melt-spun CeB 6 /Al composite inoculant. Applied Surface Science, 2018, 431, 202-206.	3.1	15
34	Fabrication and properties of biodegradable ZnO nano-rods/porous Zn scaffolds. Materials Characterization, 2018, 144, 227-238.	1.9	15
35	Electrochemical fabrication and magnetic properties of Fe7Co3 alloy nanowire array. Journal of Materials Science, 2011, 46, 2379-2383.	1.7	14
36	The microstructures and mechanical properties of hybrid in-situ AlN-TiC-TiN-Al3Ti/Al reinforced Al-Cu-Mn-Ti alloy matrix composites. Journal of Alloys and Compounds, 2022, 903, 163902.	2.8	14

#	Article	IF	CITATIONS
37	Microstructure and mechanical properties of in-situ dual morphology Ti8C5/TiB2 reinforced TiAl composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 840, 142918.	2.6	14
38	Fabrication and internal friction behaviors of novel porous CuAlMn shape memory alloy filled with polystyrene. Materials Letters, 2013, 92, 82-85.	1.3	13
39	Effect of Cooling Rate on Microstructure and Grain Refining Behavior of In Situ CeB6/Al Composite Inoculant in Aluminum. Metals, 2017, 7, 204.	1.0	13
40	Simultaneously improving strength and ductility of hybrid Al–Si matrix composite with polyphasic and multi-scale ceramic particles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 804, 140517.	2.6	13
41	Rapid Degradation of Azo Dyes by Melt-Spun Mg-Zn-Ca Metallic Glass in Artificial Seawater. Metals, 2017, 7, 485.	1.0	12
42	Preparation of nanocrystalline porous titania films on titanium substrates by a sol–gel method with polyethylene glycol as a template. Journal of Sol-Gel Science and Technology, 2007, 43, 151-159.	1.1	11
43	Electrochemical fabrication, microstructure and magnetic properties of Sm2Co17/Fe7Co3 dual phase nanocomposite. Materials Chemistry and Physics, 2015, 160, 315-320.	2.0	11
44	Microstructure and Mechanical Properties of Ti6Al4V Alloy Modified and Reinforced by In Situ Ti5Si3/Ti Composite Ribbon Inoculants. Metals, 2017, 7, 267.	1.0	11
45	Microstructure and mechanical properties of hybrid in-situ Ti2AlCw/ Mo2B5p reinforced TiAl alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 829, 142182.	2.6	11
46	Preparation of in-situ AlN-TiC nanoparticles and their refinement and reinforcement effects on Al-Zn-Mn-Cu alloy. Journal of Alloys and Compounds, 2021, 881, 160504.	2.8	10
47	Fabrication and Mechanical Behavior of Ex Situ Mg-Based Bulk Metallic Glass Matrix Composite Reinforced with Electroless Cu-Coated SiC Particles. Materials, 2017, 10, 1371.	1.3	9
48	Fabrication and damping behaviors of novel polyurethane/TiNiCu composites. Physica B: Condensed Matter, 2020, 582, 411911.	1.3	9
49	Ti–46Al–4Nb alloy refined and reinforced by in-situ TiC nanoparticles and TiB2 whiskers. Journal of Alloys and Compounds, 2022, 892, 162195.	2.8	9
50	Effects of macroscopic graphite particulates on the damping behavior of CuAlMn shape memory alloy. Journal of Materials Science, 2007, 42, 5029-5035.	1.7	8
51	Effects of cobalt addition on microstructure and magnetic properties of PrNdFeB/Fe 7 Co 3 nanocomposite. Journal of Rare Earths, 2017, 35, 468-473.	2.5	8
52	A new Sm(Co,Fe,Cu) 4 B/Sm 2 (Co,Fe,Cu) 7 cell structure with the coercivity of up to 5.01†T. Journal of Magnetism and Magnetic Materials, 2018, 458, 66-74.	1.0	8
53	Preparation and Microstructure of In Situ CaB ₆ –Al ₄ Ca/Al Composite Inoculant Ribbon and Its Refining and Modifying Effect on Al–10Si–0.3Mg Alloy. Advanced Engineering Materials, 2018, 20, 1800687.	1.6	8
54	Effects of magnetic field and annealing on the structure and magnetic properties of Alnico ribbons. Journal of Alloys and Compounds, 2019, 785, 715-724.	2.8	8

#	Article	lF	CITATIONS
55	Preparation of in situ NbC–TiC@Graphene/Fe composite inoculant and its effect on microstructures and properties of GCr15. Materials Science & Digneering A: Structural Materials: Properties, Microstructure and Processing, 2020, 772, 138737.	2.6	8
56	Enhanced Photocatalytic and Antibacterial Activities of K2Ti6O13 Nanowires Induced by Copper Doping. Crystals, 2020, 10, 400.	1.0	8
57	Microstructure evolution and mechanical properties of Ti–46Al–4Nb alloy modified by in-situ Si3N4-graphene core-shell nanoparticles. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139349.	2.6	8
58	Refining and modification effects of (Al, Zr, Si)–Al4Sr on Al–7Si–0.5ÂMg alloy. Journal of Materials Research and Technology, 2021, 15, 1604-1612.	2.6	8
59	Fabrication and magnetic properties of Sm-Co/Fe-Co and Sm-Co/Fe-Co-Dy magnetic nanowires. Superlattices and Microstructures, 2017, 107, 246-253.	1.4	7
60	Effects of Parent Phase Aging and Nb Element on the Microstructure, Martensitic Transformation, and Damping Behaviors of a Cu–Al–Mn Shape Memory Alloy. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900923.	0.8	7
61	A new Sm–Co-type hard magnetic alloy with an amorphous based nanocrystalline microstructure. Intermetallics, 2013, 35, 82-89.	1.8	6
62	The effect of amorphous nanocrystalline inoculants on structures and properties of high speed steel. Materials Research Express, 2017, 4, 066507.	0.8	6
63	Microstructures and magnetic properties of Tb-Fe-Co magnetic nanowire arrays prepared by electrochemical deposition. Superlattices and Microstructures, 2019, 128, 298-306.	1.4	6
64	Study on the Tb–Dy–Fe–Co magnetic nanowires prepared by AAO template. Materials Letters, 2019, 237, 314-318.	1.3	6
65	The properties and microstructure of Nd-Fe-B nanowires fabricated by electrochemical deposition using porous Alumina templates. Materials Chemistry and Physics, 2020, 242, 122470.	2.0	6
66	Effect of Cooling Rate on the Microstructure Evolution and Mechanical Properties of Iron-Rich Al–Si Alloy. Materials, 2022, 15, 411.	1.3	6
67	Preparation of nanocrystal modificator and its modification mechanism. Transactions of Nonferrous Metals Society of China, 2007, 17, 823-827.	1.7	5
68	Fabrication and damping behavior of a novel Mg/TiNiCu composite. Materials Letters, 2018, 217, 206-210.	1.3	5
69	Fabrication, microstructure and mechanical properties of Al2O3 whiskers reinforced Ti-46Al-4Nb alloy. Materials Letters, 2020, 259, 126902.	1.3	5
70	Microstructure evolution and the mechanical properties of in-situ Ti2AlCw-NbC@TiBx/TiAlNb composite with high performance. Composites Part B: Engineering, 2022, 234, 109689.	5.9	5
71	Study on the microstructure and magnetic properties of Sm–Fe–Ti alloys and their nitrides. Physica B: Condensed Matter, 2004, 351, 151-157.	1.3	4
72	Structural and magnetic properties of Sm2Fe17 \hat{a} 2xNbx (x = 0 \hat{a} 4) alloys prepared by HDDR processes and their nitrides. Rare Metals, 2006, 25, 129-137.	3.6	4

#	Article	IF	Citations
73	Fabrication and biocompatibility in vitro of potassium titanate biological thin film/titanium alloy biological composite. Frontiers of Materials Science in China, 2007, 1, 252-257.	0.5	4
74	Fabrication of the Ti5Si3/Ti composite inoculants and its refining mechanism on pure titanium. Metals and Materials International, 2017, 23, 397-404.	1.8	4
75	Electrochemical synthesis and magnetic properties of Nd-Fe-B-Tb nanowires. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114668.	1.7	4
76	Microstructures and magnetic properties of PrFeB/Fe7Co3 nanocomposite magnets. Materials Letters, 2020, 265, 127441.	1.3	4
77	Ti3Al matrix alloy refined and reinforced by in-situ synthesized SiCw/Nb4C3 core-shell structure. Journal of Alloys and Compounds, 2021, 860, 158423.	2.8	4
78	Refining effect of an intermetallic inoculant on a Cu–Al–Mn shape memory alloy. Materials Chemistry and Physics, 2022, 280, 125835.	2.0	4
79	Electrodepositing fabrication and microstructures of the Fe nanowires with a preferred orientation. Superlattices and Microstructures, 2011, 50, 628-633.	1.4	3
80	In vitro hemolytic properties' assessment of K ₂ Ti ₆ O ₁₃ nanowires. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanoengineering and Nanosystems, 2015, 229, 201-205.	0.1	3
81	Effect of Preparation Parameter on Microstructure and Grain Refining Behavior of In Situ AlN-TiN-TiB2/Al Composite Inoculants on Pure Aluminum. Metals, 2017, 7, 56.	1.0	3
82	Enhanced grain refinement of in-situ AlN-TiN/Al composite inoculant on aluminum assisted by ultrasonic treatment. Materials Letters, 2019, 255, 126592.	1.3	3
83	Interface microstructure and magnetic properties of \hat{l} ±-Sm2Co17/ \hat{l} 2-Sm2Co17 dual phase nanowire magnetic composite. Intermetallics, 2019, 111, 106494.	1.8	3
84	The effect of the in-situ hybrid Ti5Si3p/Ti2AlNw on the microstructure and mechanical properties of TiAl. Materials Letters, 2021, 304, 130678.	1.3	3
85	Fabrication and Properties of Zn-3Mg-1Ti Alloy as a Potential Biodegradable Implant Material. Materials, 2022, 15, 940.	1.3	3
86	Strain Amplitude Dependence of Internal Friction in a Cu–Al–Mn Shape Memory Alloy. Physica Status Solidi (A) Applications and Materials Science, 2022, 219, .	0.8	3
87	Interaction Mechanism of <i>in-situ</i> Nano-TiN-AlN Particles and Solid/Liquid Interface during Solidification. Journal of Nanoscience and Nanotechnology, 2003, 3, 410-412.	0.9	2
88	Structural and nitrogenation of Sm2Fe16Ti1 alloy prepared by HDDR process. Materials Chemistry and Physics, 2006, 97, 116-120.	2.0	2
89	Fabrication of Ti-based amorphous composite and biocompatibility research. Journal Wuhan University of Technology, Materials Science Edition, 2010, 25, 8-11.	0.4	2
90	Effects of the Nanostructured Fe-V-Nb Modificators on the Microstructure and Mechanical Properties of Si-Mn Steel. Journal of Nanomaterials, 2012, 2012, 1-6.	1.5	2

#	Article	IF	Citations
91	Studies on the structure and magnetic properties of Sm8Co73.2Fe8.8B10 ribbons. Physica B: Condensed Matter, 2018, 550, 60-67.	1.3	2
92	Effect of Al-5Ti-B4C-Y refiner on the microstructure and properties of Al-Cu-Mn alloy. Materials Research Express, 2019, 6, 016542.	0.8	2
93	Interfacial Characterization and Highâ€Temperature Property of NbB 2 +NbC Nanoparticlesâ€Reinforced 2219Al Matrix Composite Synthesized by Melt Spinning. Advanced Engineering Materials, 2020, 22, 2000248.	1.6	2
94	The effect of Tb doping on the magnetic properties and microstructure of a TbNdFeCoB/Fe ₇ Co ₃ nanocomposite permanent magnet. Materials Research Express, 2020, 7, 016112.	0.8	2
95	Electrochemical synthesis, structure characterization and magnetic properties of Tb Fe7Co3 (x=0, 0.6,) Tj ETQq1 1	. 0.784314 2.5	1 1gBT /Ov∈
96	Preparation of <i>in situ</i> Cr@Graphene/Fe nanocomposite inoculant and its refining effect on microstructure and properties of W ₁₈ Cr ₄ V high-speed steel. Materials Science and Technology, 2021, 37, 224-236.	0.8	2
97	Fabrication and magnetic properties of Tb-doped multiphase Pr-Tb-Fe-B magnetic nanowire arrays. Materials Chemistry and Physics, 2021, 262, 124299.	2.0	2
98	Integrated design modeling of miniature syringe for drug delivery., 2008,,.		1
99	Histological and Mechanical Evaluation of the in vivo Bone-bonding Ability on the K2TinO2n+1 \hat{l}^2 -Ti Alloy as a Novel Bioactive Material. Materials Research Society Symposia Proceedings, 2009, 1187, 152.	0.1	1
100	Fabrication and characterization of in situ AlN–TiN/Al composite ribbons. Rare Metals, 2015, 34, 645-649.	3.6	1
101	Microstructure and Properties' Evaluation of W18Cr4V Modified by Fe–Zr–Nb–N–B Nanoâ€Powder Inoculants. Steel Research International, 2017, 88, 1600318.	1.0	1
102	Thermodynamic calculation and thermal stability of Al-Y-Ce-Ni metallic glass. Materials Research Express, 2018, 5, 025205.	0.8	1
103	Grapheneâ€Assisted Preparation of In Situ TiC–TiB 2 /Al Composite Inoculant for Al–Si Alloy. Advanced Engineering Materials, 2019, 21, 1900378.	1.6	1
104	Fabrication and magnetic properties of Tb–Fe–B nanotubes prepared by electrochemical deposition. Journal of Materials Science: Materials in Electronics, 2020, 31, 3976-3985.	1.1	1
105	Enhanced Grain Refinement of W18Cr4V Highâ€Speed Steel Using in Situ TiNâ^'Nbâ^'Cr@Graphene/Fe Nanocomposite Inoculant. Steel Research International, 2021, 92, 2100094.	1.0	1
106	The microstructure and magnetic behaviors of Pr Fe B/Fe7Co3 dual phase nanowires: As a perpendicular magnetic recording candidate. Materials Characterization, 2021, 180, 111410.	1.9	1
107	Refining and reinforcing effects of TiC-Al ₂ O ₃ /Al ribbons inoculant on Al–Si–Mg–Ti alloy. Materials Research Express, 2022, 9, 036516.	0.8	1
108	Fabrication and magnetic properties of Sm3(Fe, Ti)29N \times / \hat{l} ±-Fe dual-phase nanocomposite permanent magnetic material. Science in China Series D: Earth Sciences, 2007, 50, 184-189.	0.9	O

#	Article	IF	CITATIONS
109	Preparation of submicrocrystal Al-Ti-B master alloy and its influence on microstructure and properties of AZ91D. China Foundry, 2017, 14, 513-518.	0.5	О
110	Use of B4C powder for preparing in situ Al–Ti–B–C inoculant in Al–Ti melt and its refining effect on A356 alloy. Materials Research Express, 2018, 5, 016509.	0.8	0
111	Microstructures and Properties of T1 Highâ€Speed Steel Modified by In Situ Fe–Cr–Ti–C–N Nanocomposite Inoculants. Steel Research International, 2021, 92, 2000367.	1.0	O
112	Mechanism of magnetic field annealing on increasing both coercivity and magnetization of Sm(Co0.9Cu0.1)5 ribbons. Materials Today Communications, 2021, 26, 102052.	0.9	0
113	Preparation of in situ TiC@TiN core–shell and Ti2N–Al4C3 nanoparticles and their effects on Al–Zn–Mg–Cu alloy. Journal of Materials Science, 2021, 56, 17011-17027.	1.7	O
114	Effects of Cooling Rate on Particle Size, Morphology, and Refining Effect of In-Situ NdB6-Al11Nd3/Al Inoculants. Journal of Materials Engineering and Performance, 0, , 1.	1.2	0