
Virginia Aiassa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4605811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	New poly(acrylamide) nanoparticles in the development of third generation photosensitizers. Dyes and Pigments, 2021, 184, 108856.	3.7	11
2	Structural, physicochemical and biological characterization of chloramphenicol multicomponent complexes. Journal of Molecular Liquids, 2021, 331, 115761.	4.9	9
3	Cyclodextrin Multicomponent Complexes: Pharmaceutical Applications. Pharmaceutics, 2021, 13, 1099.	4.5	41
4	Nanostructured Gold Coating for Prevention of Biofilm Development in Medical Devices. Journal of Endourology, 2020, 34, 345-351.	2.1	11
5	Improved Activity of Rifampicin Against Biofilms of Staphylococcus aureus by Multicomponent Complexation. AAPS PharmSciTech, 2020, 21, 163.	3.3	7
6	Thionine in the design of new photosensitizers: Bromination and vehiculization in polymeric nanoparticles. Journal of Molecular Liquids, 2020, 310, 113247.	4.9	6
7	Oxidative stress response in reference and clinical Staphylococcus aureus strains under Linezolid exposure. Journal of Global Antimicrobial Resistance, 2020, 22, 257-262.	2.2	8
8	Innovative technological systems to optimize the delivery and therapeutic activity of antimicrobial drugs. , 2020, , 105-139.		1
9	Rapid and effective photodynamic treatment of biofilm infections using low doses of amoxicillin-coated gold nanoparticles. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101811.	2.6	10
10	Simultaneous improvement of ketoconazole solubility, antifungal and antibiofilm activity by multicomponent complexation. Therapeutic Delivery, 2020, 11, 701-712.	2.2	6
11	Halogenated phenotiazine as photoantimicrobial agent against Staphylococcus aureus. Evaluation of the vehiculization in polymeric nanoparticles. Dyes and Pigments, 2019, 170, 107625.	3.7	4
12	Evaluation of physicochemical properties and bacterial photoinactivation of phenothiazine photosensitizers. Photochemical and Photobiological Sciences, 2019, 18, 1576-1586.	2.9	12
13	Influence of proline and β-Cyclodextrin in ketoconazole physicochemical and microbiological performance. Journal of Molecular Structure, 2019, 1176, 470-477.	3.6	10
14	Development and evaluation of novel nanophotosensitizers as photoantimicrobial agents against Staphylococcus aureus. Materials Science and Engineering C, 2019, 94, 303-309.	7.3	10
15	Preparation of Chloramphenicol/Amino Acid Combinations Exhibiting Enhanced Dissolution Rates and Reduced Drug-Induced Oxidative Stress. AAPS PharmSciTech, 2017, 18, 2910-2918.	3.3	13
16	Enhanced inhibition of bacterial biofilm formation and reduced leukocyte toxicity by chloramphenicol:β-cyclodextrin:N-acetylcysteine complex. Carbohydrate Polymers, 2016, 152, 672-678.	10.2	37
17	Linezolid as an eradication agent against assembled methicillin-resistant Staphylococcus aureus biofilms. RSC Advances, 2016, 6, 101023-101028.	3.6	18
18	Preparation and characterization of polymorphs of the glucocorticoid deflazacort. Pharmaceutical Development and Technology, 2015, 20, 401-409.	2.4	7

VIRGINIA AIASSA

#	Article	IF	CITATIONS
19	Inclusion complexes of chloramphenicol with β-cyclodextrin and aminoacids as a way to increase drug solubility and modulate ROS production. Carbohydrate Polymers, 2015, 121, 320-327.	10.2	52
20	Macromolecular Oxidation in Planktonic Population and Biofilms of Proteus mirabilis Exposed to Ciprofloxacin. Cell Biochemistry and Biophysics, 2014, 68, 49-54.	1.8	5
21	Nitrosylation: An adverse factor in Uremic Hemolytic Syndrome. Antitoxin effect of Ziziphus mistol Griseb. Food and Chemical Toxicology, 2013, 56, 381-386.	3.6	4
22	Hemolysin from Escherichia coli induces oxidative stress in blood. Toxicon, 2013, 70, 15-20.	1.6	13
23	Binding of Sulfamethazine to β-cyclodextrin and Methyl-β-cyclodextrin. AAPS PharmSciTech, 2013, 14, 727-735.	3.3	22
24	Sublethal ciprofloxacin treatment leads to resistance via antioxidant systems in Proteus mirabilis. FEMS Microbiology Letters, 2012, 327, 25-32.	1.8	13
25	Sulfamethoxazole:hydroxypropyl-β-cyclodextrin complex: preparation and characterization. Journal of Pharmaceutical and Biomedical Analysis, 2012, 63, 74-79.	2.8	50
26	Increased advanced oxidation of protein products and enhanced total antioxidant capacity in plasma by action of toxins of Escherichia coli STEC. Toxicology in Vitro, 2011, 25, 426-431.	2.4	15
27	Resistance to ciprofloxacin by enhancement of antioxidant defenses in biofilm and planktonic Proteus mirabilis. Biochemical and Biophysical Research Communications, 2010, 393, 84-88.	2.1	42
28	Physicochemical characterization of deflazacort: Thermal analysis, crystallographic and spectroscopic study. Steroids, 2007, 72, 261-269.	1.8	18
29	Action of ciprofloxacin on planktonic bacteria and biofilm of Proteus mirabilis. Biofilms, 2006, 3, 11-17.	0.6	7