## **Gregor Bucher**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4605274/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                 | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Screens in fly and beetle reveal vastly divergent gene sets required for developmental processes. BMC<br>Biology, 2022, 20, 38.                                                                                                         | 1.7 | 11        |
| 2  | An atlas of the developing <i>Tribolium castaneum</i> brain reveals conservation in anatomy and divergence in timing to <i>Drosophila melanogaster</i> . Journal of Comparative Neurology, 2022, 530, 2335-2371.                        | 0.9 | 8         |
| 3  | The red flour beetle T. castaneum: elaborate genetic toolkit and unbiased large scale RNAi screening to study insect biology and evolution. EvoDevo, 2022, 13, .                                                                        | 1.3 | 18        |
| 4  | The mustard leaf beetle, Phaedon cochleariae, as a screening model for exogenous RNAi-based control of coleopteran pests. Pesticide Biochemistry and Physiology, 2021, 176, 104870.                                                     | 1.6 | 18        |
| 5  | Shaking hands is a homeodomain transcription factor that controls axon outgrowth of central complex neurons in the insect model <i>Tribolium</i> . Development (Cambridge), 2021, 148, .                                                | 1.2 | 2         |
| 6  | Identifying essential genes across eukaryotes by machine learning. NAR Genomics and Bioinformatics, 2021, 3, Iqab110.                                                                                                                   | 1.5 | 10        |
| 7  | Establishing RNAi for basic research and pest control and identification of the most efficient target genes for pest control: a brief guide. Frontiers in Zoology, 2021, 18, 60.                                                        | 0.9 | 21        |
| 8  | six3 acts upstream of foxQ2 in labrum and neural development in the spider Parasteatoda<br>tepidariorum. Development Genes and Evolution, 2020, 230, 95-104.                                                                            | 0.4 | 19        |
| 9  | Enhanced genome assembly and a new official gene set for Tribolium castaneum. BMC Genomics, 2020, 21, 47.                                                                                                                               | 1.2 | 84        |
| 10 | Profiling of RNAi sensitivity after foliar dsRNA exposure in different European populations of<br>Colorado potato beetle reveals a robust response with minor variability. Pesticide Biochemistry and<br>Physiology, 2020, 166, 104569. | 1.6 | 37        |
| 11 | Immunohistochemistry and Fluorescent Whole Mount RNA In Situ Hybridization in Larval and Adult<br>Brains of Tribolium. Methods in Molecular Biology, 2020, 2047, 233-251.                                                               | 0.4 | 7         |
| 12 | The Red Flour Beetle as Model for Comparative Neural Development: Genome Editing to Mark Neural<br>Cells in Tribolium Brain Development. Methods in Molecular Biology, 2020, 2047, 191-217.                                             | 0.4 | 10        |
| 13 | A Protocol for Double Fluorescent In Situ Hybridization and Immunohistochemistry for the Study of<br>Embryonic Brain Development in Tribolium castaneum. Methods in Molecular Biology, 2020, 2047,<br>219-232.                          | 0.4 | 7         |
| 14 | Sequence heterochrony led to a gain of functionality in an immature stage of the central complex: A<br>fly–beetle insight. PLoS Biology, 2020, 18, e3000881.                                                                            | 2.6 | 15        |
| 15 | Title is missing!. , 2020, 18, e3000881.                                                                                                                                                                                                |     | 0         |
| 16 | Title is missing!. , 2020, 18, e3000881.                                                                                                                                                                                                |     | 0         |
| 17 | Title is missing!. , 2020, 18, e3000881.                                                                                                                                                                                                |     | 0         |
|    |                                                                                                                                                                                                                                         |     |           |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Title is missing!. , 2020, 18, e3000881.                                                                                                                                                                                                  |     | Ο         |
| 20 | Title is missing!. , 2020, 18, e3000881.                                                                                                                                                                                                  |     | 0         |
| 21 | A Large Scale Systemic RNAi Screen in the Red Flour Beetle <i>Tribolium castaneum</i> Identifies Novel<br>Genes Involved in Insect Muscle Development. G3: Genes, Genomes, Genetics, 2019, 9, 1009-1026.                                  | 0.8 | 13        |
| 22 | An ancestral apical brain region contributes to the central complex under the control of foxQ2 in the beetle Tribolium. ELife, 2019, 8, .                                                                                                 | 2.8 | 23        |
| 23 | Double abdomen in a short-germ insect: Zygotic control of axis formation revealed in the beetle<br><i>Tribolium castaneum</i> . Proceedings of the National Academy of Sciences of the United States of<br>America, 2018, 115, 1819-1824. | 3.3 | 31        |
| 24 | Expanded and updated data and a query pipeline for iBeetle-Base. Nucleic Acids Research, 2018, 46, D831-D835.                                                                                                                             | 6.5 | 35        |
| 25 | A morphological novelty evolved by co-option of a reduced gene regulatory network and gene<br>recruitment in a beetle. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20181373.                                      | 1.2 | 22        |
| 26 | <i>foxQ2</i> has a key role in anterior head and central brain patterning in insects. Development<br>(Cambridge), 2017, 144, 2969-2981.                                                                                                   | 1.2 | 19        |
| 27 | The Insect Ortholog of the Human Orphan Cytokine Receptor CRLF3 Is a Neuroprotective Erythropoietin Receptor. Frontiers in Molecular Neuroscience, 2017, 10, 223.                                                                         | 1.4 | 28        |
| 28 | The house spider genome reveals an ancient whole-genome duplication during arachnid evolution.<br>BMC Biology, 2017, 15, 62.                                                                                                              | 1.7 | 286       |
| 29 | The insect central complex as model for heterochronic brain development—background, concepts, and tools. Development Genes and Evolution, 2016, 226, 209-219.                                                                             | 0.4 | 30        |
| 30 | Notch signaling induces cell proliferation in the labrum in a regulatory network different from the thoracic legs. Developmental Biology, 2015, 408, 164-177.                                                                             | 0.9 | 24        |
| 31 | Large scale RNAi screen in Tribolium reveals novel target genes for pest control and the proteasome as prime target. BMC Genomics, 2015, 16, 674.                                                                                         | 1.2 | 119       |
| 32 | The iBeetle large-scale RNAi screen reveals gene functions for insect development and physiology.<br>Nature Communications, 2015, 6, 7822.                                                                                                | 5.8 | 139       |
| 33 | iBeetle-Base: a database for RNAi phenotypes in the red flour beetle Tribolium castaneum. Nucleic Acids<br>Research, 2015, 43, D720-D725.                                                                                                 | 6.5 | 124       |
| 34 | Wnt/ $\hat{l}^2$ -catenin signaling integrates patterning and metabolism of the insect growth zone. Development (Cambridge), 2014, 141, 4740-4750.                                                                                        | 1.2 | 43        |
| 35 | Tc-knirps plays different roles in the specification of antennal and mandibular parasegment<br>boundaries and is regulated by a pair-rule gene in the beetle Tribolium castaneum. BMC Developmental<br>Biology, 2013, 13, 25.             | 2.1 | 12        |
| 36 | RNAi phenotypes are influenced by the genetic background of the injected strain. BMC Genomics, 2013, 14, 5.                                                                                                                               | 1.2 | 43        |

**GREGOR BUCHER** 

| #  | Article                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Changes in anterior head patterning underlie the evolution of long germ embryogenesis.<br>Developmental Biology, 2013, 374, 174-184.                                                                                         | 0.9 | 33        |
| 38 | TrOn: An Anatomical Ontology for the Beetle Tribolium castaneum. PLoS ONE, 2013, 8, e70695.                                                                                                                                  | 1.1 | 15        |
| 39 | Asymmetrically expressed <i>axin</i> required for anterior development in <i>Tribolium</i> .<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7782-7786.                       | 3.3 | 65        |
| 40 | Heat shock-mediated misexpression of genes in the beetle Tribolium castaneum. Development Genes and Evolution, 2012, 222, 287-298.                                                                                           | 0.4 | 39        |
| 41 | Insect Tc-six4 marks a unit with similarity to vertebrate placodes. Developmental Biology, 2011, 350, 208-216.                                                                                                               | 0.9 | 20        |
| 42 | Candidate Gene Screen in the Red Flour Beetle Tribolium Reveals Six3 as Ancient Regulator of Anterior<br>Median Head and Central Complex Development. PLoS Genetics, 2011, 7, e1002416.                                      | 1.5 | 66        |
| 43 | Genetics, development and composition of the insect head – A beetle's view. Arthropod Structure and Development, 2010, 39, 399-410.                                                                                          | 0.8 | 66        |
| 44 | Functionality of the GAL4/UAS system in Tribolium requires the use of endogenous core promoters.<br>BMC Developmental Biology, 2010, 10, 53.                                                                                 | 2.1 | 90        |
| 45 | Six3 demarcates the anterior-most developing brain region in bilaterian animals. EvoDevo, 2010, 1, 14.                                                                                                                       | 1.3 | 149       |
| 46 | Formation of the insect head involves lateral contribution of the intercalary segment, which depends on Tc-labial function. Developmental Biology, 2010, 338, 107-116.                                                       | 0.9 | 41        |
| 47 | Insertional mutagenesis screening identifies the zinc finger homeodomain 2 (zfh2) gene as a novel factor required for embryonic leg development in Tribolium castaneum. Development Genes and Evolution, 2009, 219, 399-407. | 0.4 | 6         |
| 48 | Large-scale insertional mutagenesis of a coleopteran stored grain pest, the red flour beetle Tribolium castaneum, identifies embryonic lethal mutations and enhancer traps. BMC Biology, 2009, 7, 73.                        | 1.7 | 93        |
| 49 | The insect upper lip (labrum) is a nonsegmental appendageâ€like structure. Evolution & Development,<br>2009, 11, 480-488.                                                                                                    | 1.1 | 57        |
| 50 | Probing the Drosophila retinal determination gene network in Tribolium (II): The Pax6 genes eyeless and twin of eyeless. Developmental Biology, 2009, 333, 215-227.                                                          | 0.9 | 56        |
| 51 | The Red Flour Beetle, <i>Tribolium castaneum</i> (Coleoptera): A Model for Studies of Development<br>and Pest Biology: Figure 1 Cold Spring Harbor Protocols, 2009, 2009, pdb.emo126.                                        | 0.2 | 119       |
| 52 | Single and Double Whole-Mount In Situ Hybridization in Red Flour Beetle (Tribolium) Embryos. Cold<br>Spring Harbor Protocols, 2009, 2009, pdb.prot5258-pdb.prot5258.                                                         | 0.2 | 52        |
| 53 | RNAi in the Red Flour Beetle (Tribolium). Cold Spring Harbor Protocols, 2009, 2009, pdb.prot5256-pdb.prot5256.                                                                                                               | 0.2 | 73        |
| 54 | Whole-mount in situ hybridization in the Rotifer Brachionus plicatilis representing a basal branch of lophotrochozoans. Development Genes and Evolution, 2008, 218, 445-451.                                                 | 0.4 | 12        |

**GREGOR BUCHER** 

| #  | Article                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The genome of the model beetle and pest Tribolium castaneum. Nature, 2008, 452, 949-955.                                                                                                 | 13.7 | 1,255     |
| 56 | EST based phylogenomics of Syndermata questions monophyly of Eurotatoria. BMC Evolutionary<br>Biology, 2008, 8, 345.                                                                     | 3.2  | 44        |
| 57 | Exploring systemic RNA interference in insects: a genome-wide survey for RNAi genes in Tribolium.<br>Genome Biology, 2008, 9, R10.                                                       | 13.9 | 459       |
| 58 | Divergent functions of orthodenticle, empty spiracles and buttonhead in early head patterning of the beetle Tribolium castaneum (Coleoptera). Developmental Biology, 2008, 317, 600-613. | 0.9  | 98        |
| 59 | The Tribolium ortholog of knirps and knirps-related is crucial for head segmentation but plays a minor role during abdominal patterning. Developmental Biology, 2008, 321, 284-294.      | 0.9  | 49        |
| 60 | Maintenance of segment and appendage primordia by the Tribolium gene knödel. Mechanisms of<br>Development, 2006, 123, 430-439.                                                           | 1.7  | 22        |
| 61 | Anterior localization of maternal mRNAs in a short germ insect lacking bicoid. Evolution & Development, 2005, 7, 142-149.                                                                | 1.1  | 52        |
| 62 | Tribolium mae expression suggests roles in terminal and midline patterning and in the specification of mesoderm. Development Genes and Evolution, 2005, 215, 478-481.                    | 0.4  | 5         |
| 63 | Breakdown of abdominal patterning in the Tribolium Krul̀^ppel mutant jaws. Development (Cambridge),<br>2005, 132, 5353-5363.                                                             | 1.2  | 85        |
| 64 | Divergent segmentation mechanism in the short germ insect Tribolium revealed by giant expression and function. Development (Cambridge), 2004, 131, 1729-1740.                            | 1.2  | 112       |
| 65 | Parental RNAi in Tribolium (Coleoptera). Current Biology, 2002, 12, R85-R86.                                                                                                             | 1.8  | 459       |
| 66 | A system to efficiently maintain embryonic lethal mutations in the flour beetle Tribolium castaneum.<br>Development Genes and Evolution, 1999, 209, 382-389.                             | 0.4  | 37        |
| 67 | Pair-rule and gap gene mutants in the flour beetle Tribolium castaneum. Development Genes and Evolution, 1998, 208, 558-568.                                                             | 0.4  | 80        |