
Antonio Serrano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4605197/publications.pdf Version: 2024-02-01

ANTONIO SEPRANO

#	Article	IF	CITATIONS
1	Assessment of different mechanical treatments for improving the anaerobic biodegradability of residual raspberry extrudate. Waste Management, 2022, 139, 190-198.	3.7	4
2	Bottom ash from smouldered digestate and coconut coir as an alkalinity supplement for the anaerobic digestion of fruit waste. Chemosphere, 2022, 296, 134049.	4.2	12
3	Interrelating EPS, soluble microbial products and metal solubility in a methanogenic consortium stressed by nickel and cobalt. Ecotoxicology and Environmental Safety, 2022, 238, 113579.	2.9	8
4	Enhancing the recovery of volatile fatty acids from strawberry extrudate through anaerobic fermentation at different pH values. Environmental Technology and Innovation, 2022, 28, 102587.	3.0	8
5	Role of the substrate on Ni inhibition in biological sulfate reduction. Journal of Environmental Management, 2022, 316, 115216.	3.8	0
6	Use of Anthracophyllum discolor and Stereum hirsutum as a Suitable Strategy for Delignification and Phenolic Removal of Olive Mill Solid Waste. Foods, 2022, 11, 1587.	1.9	1
7	Enhanced metal recovery by efficient agglomeration of precipitates in an up-flow fixed-bed bioreactor. Chemical Engineering Journal, 2021, 416, 127662.	6.6	7
8	Nickel complexation as an innovative approach for nickel-cobalt selective recovery using sulfate-reducing bacteria. Journal of Hazardous Materials, 2021, 402, 123506.	6.5	16
9	Is anaerobic digestion a feasible alternative to the combustion of olive mill solid waste in terms of energy production? A critical review. Biofuels, Bioproducts and Biorefining, 2021, 15, 150-162.	1.9	15
10	Influence of phenols and furans released during thermal pretreatment of olive mill solid waste on its anaerobic digestion. Waste Management, 2021, 120, 202-208.	3.7	25
11	Comparison of Pre-treatment Technologies to Improve Sewage Sludge Biomethanization. Applied Biochemistry and Biotechnology, 2021, 193, 777-790.	1.4	1
12	Biological treatment of mine-impacted waters on the context of metal recovery. , 2021, , 499-522.		2
13	Beyond PHA: Stimulating intracellular accumulation of added-value compounds in mixed microbial cultures. Bioresource Technology, 2021, 337, 125381.	4.8	16
14	Batch assays for biological sulfate-reduction: a review towards a standardized protocol. Critical Reviews in Environmental Science and Technology, 2020, 50, 1195-1223.	6.6	13
15	The importance of governmental incentives for small biomethane plants in South Spain. Energy, 2020, 206, 118158.	4.5	25
16	Biogas Potential of the Side Streams Obtained in a Novel Phenolic Extraction System from Olive Mill Solid Waste. Molecules, 2020, 25, 5438.	1.7	4
17	Solubilization of Phenols and Sugars from Raspberry Extrudate by Hydrothermal Treatments. Processes, 2020, 8, 842.	1.3	8
18	High-Value-Added Compound Recovery with High-Temperature Hydrothermal Treatment and Steam Explosion, and Subsequent Biomethanization of Residual Strawberry Extrudate. Foods, 2020, 9, 1082.	1.9	13

ANTONIO SERRANO

#	Article	IF	CITATIONS
19	Mesophilic Semi-Continuous Anaerobic Digestion of Strawberry Extrudate Pretreated with Steam Explosion. Foods, 2020, 9, 1887.	1.9	5
20	pH-Controlled fermentation of strawberry waste as phenol solubilisation method. Journal of Cleaner Production, 2020, 266, 121924.	4.6	8
21	Environmental Assessment of Olive Mill Solid Waste Valorization via Anaerobic Digestion Versus Olive Pomace Oil Extraction. Processes, 2020, 8, 626.	1.3	22
22	Self-sustaining treatment as a novel alternative for the stabilization of anaerobic digestate. Journal of Environmental Management, 2020, 264, 110544.	3.8	27
23	Effect of variation in the C/[N+P] ratio on anaerobic digestion. Environmental Progress and Sustainable Energy, 2019, 38, 228-236.	1.3	29
24	Thermally-treated strawberry extrudate: A rich source of antioxidant phenols and sugars. Innovative Food Science and Emerging Technologies, 2019, 51, 186-193.	2.7	29
25	Potential of a local microalgal strain isolated from anaerobic digester effluents for nutrient removal. Journal of Applied Phycology, 2019, 31, 345-353.	1.5	7
26	Long-Term Evaluation of Mesophilic Semi-Continuous Anaerobic Digestion of Olive Mill Solid Waste Pretreated with Steam-Explosion. Energies, 2019, 12, 2222.	1.6	13
27	The influence of biologically produced sulfide-containing solutions on nickel and cobalt precipitation reactions and particle settling properties. Hydrometallurgy, 2019, 189, 105142.	1.8	11
28	Rabbit manure as a potential inoculum for anaerobic digestion. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2019, 54, 943-950.	0.9	4
29	Extraction of phenolic compounds and production of biomethane from strawberry and raspberry extrudates. Biochemical Engineering Journal, 2019, 147, 11-19.	1.8	24
30	Performance evaluation of mesophilic semi-continuous anaerobic digestion of high-temperature thermally pre-treated olive mill solid waste. Waste Management, 2019, 87, 250-257.	3.7	22
31	The accumulation of volatile fatty acids and phenols through a pH-controlled fermentation of olive mill solid waste. Science of the Total Environment, 2019, 657, 1501-1507.	3.9	30
32	Trace elements effect on hydrolytic stage towards biogas production of model lignocellulosic substrates. Journal of Environmental Management, 2019, 234, 320-325.	3.8	13
33	Effects of barium on the pathways of anaerobic digestion. Journal of Environmental Management, 2019, 232, 397-403.	3.8	7
34	Decreasing Microbial Fuel Cell Start-Up Time Using Multi-Walled Carbon Nanotubes. Emerging Science Journal, 2019, 3, 109.	1.4	14
35	Challenges of scaling-up PHA production from waste streams. A review. Journal of Environmental Management, 2018, 205, 215-230.	3.8	200
36	Valuable Compound Extraction, Anaerobic Digestion, and Composting: A Leading Biorefinery Approach for Agricultural Wastes. Journal of Agricultural and Food Chemistry, 2018, 66, 8451-8468.	2.4	115

ANTONIO SERRANO

#	Article	IF	CITATIONS
37	Olive mill solid waste biorefinery: High-temperature thermal pre-treatment for phenol recovery and biomethanization. Journal of Cleaner Production, 2017, 148, 314-323.	4.6	58
38	Biomethanization of olive mill solid waste after phenols recovery through low-temperature thermal pre-treatment. Waste Management, 2017, 61, 229-235.	3.7	29
39	Risks of using EDTA as an agent for trace metals dosing in anaerobic digestion of olive mill solid waste. Environmental Technology (United Kingdom), 2017, 38, 3137-3144.	1.2	7
40	Assessment of the treatment, production and characteristics of WWTP sludge in Andalusia by multivariate analysis. Chemical Engineering Research and Design, 2017, 109, 609-620.	2.7	9
41	Sequential adaptation of <i>Nannochloropsis gaditana</i> to table olive processing water. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2017, 52, 986-991.	0.9	7
42	Centralized management of sewage sludge and agro-industrial waste through co-composting. Journal of Environmental Management, 2017, 196, 387-393.	3.8	31
43	Phenols recovery after steam explosion of Olive Mill Solid Waste and its influence on a subsequent biomethanization process. Bioresource Technology, 2017, 243, 169-178.	4.8	26
44	Suitability of olive oil washing water as an electron donor in a feed batch operating bio-electrochemical system. Grasas Y Aceites, 2017, 68, 198.	0.3	1
45	Improvement of anaerobic digestion of sewage sludge through microwave pre-treatment. Journal of Environmental Management, 2016, 177, 231-239.	3.8	49
46	Can aquatic worms enhance methane production from waste activated sludge?. Bioresource Technology, 2016, 211, 51-57.	4.8	4
47	Effect of cobalt supplementation and fractionation on the biological response in the biological response in the biology, 2016, 211, 58-64.	4.8	28
48	Culture of microalgae biomass for valorization of table olive processing water. Grasas Y Aceites, 2016, 67, e146.	0.3	1
49	Monitoring of pile composting process of OFMSW at full scale and evaluation of odour emission impact. Journal of Environmental Management, 2015, 151, 531-539.	3.8	30
50	Mixture optimization of anaerobic co-digestion of tomato and cucumber waste. Environmental Technology (United Kingdom), 2015, 36, 2628-2636.	1.2	18
51	Improvement of the biomethanization of sewage sludge by thermal pre-treatment and co-digestion with strawberry extrudate. Journal of Cleaner Production, 2015, 90, 25-33.	4.6	47
52	Evaluation of the improvement of sonication pre-treatment in the anaerobic digestion of sewage sludge. Journal of Environmental Management, 2015, 147, 330-337.	3.8	58
53	Odour in composting processes at pilot scale: monitoring and biofiltration. Environmental Technology (United Kingdom), 2014, 35, 1676-1684.	1.2	19
54	Improvement of mesophilic anaerobic co-digestion of agri-food waste by addition of glycerol. Journal of Environmental Management, 2014, 140, 76-82.	3.8	36

ANTONIO SERRANO

#	Article	IF	CITATIONS
55	Evaluation of the Anaerobic Co-Digestion of Sewage Sludge and Tomato Waste at Mesophilic Temperature. Applied Biochemistry and Biotechnology, 2014, 172, 3862-3874.	1.4	16
56	Optimization of Anaerobic Co-digestion of Strawberry and Fish Waste. Applied Biochemistry and Biotechnology, 2014, 173, 1391-1404.	1.4	24
57	Mesophilic anaerobic co-digestion of sewage sludge and orange peel waste. Environmental Technology (United Kingdom), 2014, 35, 898-906.	1.2	33
58	Anaerobic co-digestion of sewage sludge and strawberry extrudate under mesophilic conditions. Environmental Technology (United Kingdom), 2014, 35, 2920-2927.	1.2	13
59	Agri-food waste valorization through anaerobic co-digestion: fish and strawberry residues. Journal of Cleaner Production, 2013, 54, 125-132.	4.6	47
60	Biomethanization of waste derived from strawberry processing: advantages ofÂpretreatment. Journal of Cleaner Production, 2013, 42, 190-197.	4.6	32
61	Semi-continuous anaerobic co-digestion of orange peel waste and residual glycerol derived from biodiesel manufacturing. Waste Management, 2013, 33, 1633-1639.	3.7	54
62	GM foods in Spanish newspapers. Trends in Biotechnology, 2002, 20, 285-286.	4.9	7
63	Valorization Options of Strawberry Extrudate Agro-Waste. A Review. , 0, , .		2