William J Riley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4605081/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Global Methane Budget 2000–2017. Earth System Science Data, 2020, 12, 1561-1623.	9.9	1,199
2	The global methane budget 2000–2012. Earth System Science Data, 2016, 8, 697-751.	9.9	824
3	The Community Land Model Version 5: Description of New Features, Benchmarking, and Impact of Forcing Uncertainty. Journal of Advances in Modeling Earth Systems, 2019, 11, 4245-4287.	3.8	692
4	Present state of global wetland extent and wetland methane modelling: conclusions from a model inter-comparison project (WETCHIMP). Biogeosciences, 2013, 10, 753-788.	3.3	475
5	The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution. Journal of Advances in Modeling Earth Systems, 2019, 11, 2089-2129.	3.8	404
6	The effect of vertically resolved soil biogeochemistry and alternate soil C and N models on C dynamics of CLM4. Biogeosciences, 2013, 10, 7109-7131.	3.3	359
7	Indoor Particulate Matter of Outdoor Origin:Â Importance of Size-Dependent Removal Mechanisms. Environmental Science & Technology, 2002, 36, 200-207.	10.0	346
8	Analysis of Permafrost Thermal Dynamics and Response to Climate Change in the CMIP5 Earth System Models. Journal of Climate, 2013, 26, 1877-1900.	3.2	326
9	Barriers to predicting changes in global terrestrial methane fluxes: analyses using CLM4Me, a methane biogeochemistry model integrated in CESM. Biogeosciences, 2011, 8, 1925-1953.	3.3	325
10	A modelâ€data comparison of gross primary productivity: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2012, 117, .	3.3	274
11	Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change, 2013, 119, 359-374.	3.6	257
12	A modelâ€data intercomparison of CO ₂ exchange across North America: Results from the North American Carbon Program site synthesis. Journal of Geophysical Research, 2010, 115, .	3.3	247
13	Permafrost carbonâ^'climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 3752-3757.	7.1	233
14	Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO ₂ and CH ₄ emissions. Environmental Research Letters, 2015, 10, 094011.	5.2	208
15	An improved lake model for climate simulations: Model structure, evaluation, and sensitivity analyses in CESM1. Journal of Advances in Modeling Earth Systems, 2012, 4, .	3.8	198
16	Methanogenesis in oxygenated soils is a substantial fraction of wetland methane emissions. Nature Communications, 2017, 8, 1567.	12.8	195
17	Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nature Climate Change, 2015, 5, 56-60.	18.8	184
18	Fineâ€root turnover patterns and their relationship to root diameter and soil depth in a 14 Câ€labeled hardwood forest. New Phytologist, 2006, 172, 523-535.	7.3	181

#	Article	IF	CITATIONS
19	The International Land Model Benchmarking (ILAMB) System: Design, Theory, and Implementation. Journal of Advances in Modeling Earth Systems, 2018, 10, 2731-2754.	3.8	175
20	Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry, 2018, 141, 109-123.	3.5	169
21	Present state of global wetland extent and wetland methane modelling: methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model Development, 2013, 6, 617-641.	3.6	165
22	Greening of the land surface in the world's cold regions consistent with recent warming. Nature Climate Change, 2018, 8, 825-828.	18.8	159
23	Global stocks and capacity of mineral-associated soil organic carbon. Nature Communications, 2022, 13, .	12.8	146
24	On the influence of shrub height and expansion on northern high latitude climate. Environmental Research Letters, 2012, 7, 015503.	5.2	140
25	Assessing the Influence of Climate Variability on Atmospheric Concentrations of Polychlorinated Biphenyls Using a Global-Scale Mass Balance Model (BETR-Global). Environmental Science & Technology, 2005, 39, 6749-6756.	10.0	137
26	Spatiotemporal Variations in Growing Season Exchanges of CO2, H2O, and Sensible Heat in Agricultural Fields of the Southern Great Plains. Earth Interactions, 2007, 11, 1-21.	1.5	135
27	Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks. Science Advances, 2021, 7, .	10.3	130
28	Global wetland contribution to 2000–2012 atmospheric methane growth rate dynamics. Environmental Research Letters, 2017, 12, 094013.	5.2	129
29	A mechanistic model of H218O and C18OO fluxes between ecosystems and the atmosphere: Model description and sensitivity analyses. Global Biogeochemical Cycles, 2002, 16, 42-1-42-14.	4.9	125
30	Multiple soil nutrient competition between plants, microbes, and mineral surfaces: model development, parameterization, and example applications in several tropical forests. Biogeosciences, 2016, 13, 341-363.	3.3	125
31	Arctic tundra shrubification: a review of mechanisms and impacts on ecosystem carbon balance. Environmental Research Letters, 2021, 16, 053001.	5.2	121
32	Future increases in Arctic lightning and fire risk for permafrost carbon. Nature Climate Change, 2021, 11, 404-410.	18.8	103
33	The effects of chamber pressurization on soil-surface CO2 flux and the implications for NEE measurements under elevated CO2. Global Change Biology, 1999, 5, 269-281.	9.5	102
34	Reviews and syntheses: Four decades of modeling methane cycling in terrestrial ecosystems. Biogeosciences, 2016, 13, 3735-3755.	3.3	102
35	Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nature Plants, 2019, 5, 952-958.	9.3	101
36	Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nature Communications, 2017, 8, 1223.	12.8	99

#	Article	IF	CITATIONS
37	Five years of whole-soil warming led to loss of subsoil carbon stocks and increased CO ₂ efflux. Science Advances, 2021, 7, .	10.3	98
38	A mechanistic treatment of the dominant soil nitrogen cycling processes: Model development, testing, and application. Journal of Geophysical Research, 2008, 113, .	3.3	97
39	Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics. Geoscientific Model Development, 2014, 7, 1335-1355.	3.6	97
40	Intake fraction of primary pollutants: motor vehicle emissions in the South Coast Air Basin. Atmospheric Environment, 2003, 37, 3455-3468.	4.1	94
41	Trait-Based Representation of Biological Nitrification: Model Development, Testing, and Predicted Community Composition. Frontiers in Microbiology, 2012, 3, 364.	3.5	94
42	Representing leaf and root physiological traits in CLM improves global carbon and nitrogen cycling predictions. Journal of Advances in Modeling Earth Systems, 2016, 8, 598-613.	3.8	93
43	A new theory of plant–microbe nutrient competition resolves inconsistencies between observations and model predictions. Ecological Applications, 2017, 27, 875-886.	3.8	90
44	Use of stored carbon reserves in growth of temperate tree roots and leaf buds: analyses using radiocarbon measurements and modeling. Global Change Biology, 2009, 15, 992-1014.	9.5	89
45	Alaskan soil carbon stocks: spatial variability and dependence on environmental factors. Biogeosciences, 2012, 9, 3637-3645.	3.3	88
46	Variability and quasi-decadal changes in the methane budget over the period 2000–2012. Atmospheric Chemistry and Physics, 2017, 17, 11135-11161.	4.9	85
47	BETR global – A geographically-explicit global-scale multimedia contaminant fate model. Environmental Pollution, 2011, 159, 1442-1445.	7.5	82
48	WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia. Biogeosciences, 2015, 12, 3321-3349.	3.3	81
49	Controls on terrestrial carbon feedbacks by productivity versus turnover in the CMIP5 Earth System Models. Biogeosciences, 2015, 12, 5211-5228.	3.3	81
50	20thÂcentury changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models. Biogeosciences, 2017, 14, 2641-2673.	3.3	81
51	A total quasi-steady-state formulation of substrate uptake kinetics in complex networks and an example application to microbial litter decomposition. Biogeosciences, 2013, 10, 8329-8351.	3.3	79
52	FLUXNET-CH ₄ : a global, multi-ecosystem dataset and analysis of methane seasonality from freshwater wetlands. Earth System Science Data, 2021, 13, 3607-3689.	9.9	79
53	Measuring and modeling the spectrum of fineâ€root turnover times in three forests using isotopes, minirhizotrons, and the Radix model. Global Biogeochemical Cycles, 2010, 24, .	4.9	78
54	Physical and biogeochemical controls over terrestrial ecosystem responses to nitrogen deposition. Biogeochemistry, 2001, 54, 1-39.	3.5	76

#	Article	IF	CITATIONS
55	Dynamic Behavior of Semivolatile Organic Compounds in Indoor Air. 2. Nicotine and Phenanthrene with Carpet and Wallboard. Environmental Science & amp; Technology, 2001, 35, 560-567.	10.0	75
56	Representing Nitrogen, Phosphorus, and Carbon Interactions in the E3SM Land Model: Development and Global Benchmarking. Journal of Advances in Modeling Earth Systems, 2019, 11, 2238-2258.	3.8	74
57	Characterizing the performance of ecosystem models across time scales: A spectral analysis of the North American Carbon Program site-level synthesis. Journal of Geophysical Research, 2011, 116, .	3.3	72
58	Influence of clouds and diffuse radiation on ecosystemâ€atmosphere CO ₂ and CO ¹⁸ O exchanges. Journal of Geophysical Research, 2009, 114, .	3.3	71
59	Combined effects of short term rainfall patterns and soil texture on soil nitrogen cycling — A modeling analysis. Journal of Contaminant Hydrology, 2010, 112, 141-154.	3.3	71
60	Sensitivity of wetland methane emissions to model assumptions: application and model testing against site observations. Biogeosciences, 2012, 9, 2793-2819.	3.3	68
61	Empirical estimates to reduce modeling uncertainties of soil organic carbon in permafrost regions: a review of recent progress and remaining challenges. Environmental Research Letters, 2013, 8, 035020.	5.2	68
62	Effects of Soil Moisture on the Responses of Soil Temperatures to Climate Change in Cold Regions*. Journal of Climate, 2013, 26, 3139-3158.	3.2	68
63	Predicting the effect of climate change on wildfire behavior and initial attack success. Climatic Change, 2008, 87, 251-264.	3.6	65
64	The DOE E3SM v1.1 Biogeochemistry Configuration: Description and Simulated Ecosystemâ€Climate Responses to Historical Changes in Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001766.	3.8	65
65	Climate regime shift and forest loss amplify fire in Amazonian forests. Global Change Biology, 2020, 26, 5874-5885.	9.5	62
66	PeRL: aÂcircum-Arctic Permafrost Region Pond andÂLakeÂdatabase. Earth System Science Data, 2017, 9, 317-348.	9.9	62
67	A global traitâ€based approach to estimate leaf nitrogen functional allocation from observations. Ecological Applications, 2017, 27, 1421-1434.	3.8	59
68	Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales. Global Change Biology, 2021, 27, 3582-3604.	9.5	59
69	NLOSS: A MECHANISTIC MODEL OF DENITRIFIED N2O AND N2 EVOLUTION FROM SOIL. Soil Science, 2000, 165, 237-249.	0.9	58
70	Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. Journal of Geophysical Research, 2008, 113, .	3.3	56
71	ForCent model development and testing using the Enriched Background Isotope Study experiment. Journal of Geophysical Research, 2010, 115, .	3.3	56
72	Improved modelling of soil nitrogen losses. Nature Climate Change, 2015, 5, 705-706.	18.8	56

#	Article	IF	CITATIONS
73	Regional trends and drivers of the global methane budget. Global Change Biology, 2022, 28, 182-200.	9.5	56
74	18 O composition of CO2 and H2 O ecosystem pools and fluxes in a tallgrass prairie: Simulations and comparisons to measurements. Global Change Biology, 2003, 9, 1567-1581.	9.5	54
75	Root traits explain observed tundra vegetation nitrogen uptake patterns: Implications for traitâ€based land models. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 3101-3112.	3.0	52
76	Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. Environmental Research Letters, 2021, 16, 024008.	5.2	52
77	Combining meteorology, eddy fluxes, isotope measurements, and modeling to understand environmental controls of carbon isotope discrimination at the canopy scale. Global Change Biology, 2006, 12, 710-730.	9.5	51
78	A new top boundary condition for modeling surface diffusive exchange of a generic volatile tracer: theoretical analysis and application to soil evaporation. Hydrology and Earth System Sciences, 2013, 17, 873-893.	4.9	51
79	Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environmental Research Letters, 2015, 10, 064017.	5.2	51
80	CO ₂ fertilization of terrestrial photosynthesis inferred from site to global scales. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115627119.	7.1	51
81	CLM4-BeTR, a generic biogeochemical transport and reaction module for CLM4: model development, evaluation, and application. Geoscientific Model Development, 2013, 6, 127-140.	3.6	50
82	Fineâ€root mortality rates in a temperate forest: estimates using radiocarbon data and numerical modeling. New Phytologist, 2009, 184, 387-398.	7.3	49
83	Impacts of climate extremes on gross primary production under global warming. Environmental Research Letters, 2014, 9, 094011.	5.2	49
84	Vulnerability of Amazon forests to storm-driven tree mortality. Environmental Research Letters, 2018, 13, 054021.	5.2	49
85	Ecosystem Feedbacks to Climate Change in California: Development, Testing, and Analysis Using a Coupled Regional Atmosphere and Land Surface Model (WRF3–CLM3.5). Earth Interactions, 2011, 15, 1-38.	1.5	46
86	Incorporating root hydraulic redistribution in <scp>CLM</scp> 4.5: Effects on predicted site and global evapotranspiration, soil moisture, and water storage. Journal of Advances in Modeling Earth Systems, 2015, 7, 1828-1848.	3.8	46
87	Landâ€atmosphere coupling and climate prediction over the U.S. Southern Great Plains. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,125.	3.3	46
88	Earlier leaf-out warms air in the north. Nature Climate Change, 2020, 10, 370-375.	18.8	45
89	A multi-year record of airborne CO ₂ observations in the US Southern Great Plains. Atmospheric Measurement Techniques, 2013, 6, 751-763.	3.1	44
90	Scaling impacts on environmental controls and spatial heterogeneity of soil organic carbon stocks. Biogeosciences, 2015, 12, 3993-4004.	3.3	42

#	Article	IF	CITATIONS
91	Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists. Reviews in Mineralogy and Geochemistry, 2019, 85, 329-348.	4.8	42
92	Impact of agricultural practice on regional climate in a coupled land surface mesoscale model. Journal of Geophysical Research, 2005, 110, .	3.3	41
93	Enhanced methane emissions from tropical wetlands during the 2011 La Niña. Scientific Reports, 2017, 7, 45759.	3.3	41
94	Mathematical Modelling of Arctic Polygonal Tundra with <i>Ecosys:</i> 2. Microtopography Determines How CO ₂ and CH ₄ Exchange Responds to Changes in Temperature and Precipitation. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3174-3187.	3.0	41
95	Characterizing coarse-resolution watershed soil moisture heterogeneity using fine-scale simulations. Hydrology and Earth System Sciences, 2014, 18, 2463-2483.	4.9	40
96	Observed variation in soil properties can drive large variation in modelled forest functioning and composition during tropical forest secondary succession. New Phytologist, 2019, 223, 1820-1833.	7.3	40
97	Mathematical Modelling of Arctic Polygonal Tundra with <i>Ecosys</i> : 1. Microtopography Determines How Active Layer Depths Respond to Changes in Temperature and Precipitation. Journal of Geophysical Research G: Biogeosciences, 2017, 122, 3161-3173.	3.0	38
98	Accelerated Nutrient Cycling and Increased Light Competition Will Lead to 21st Century Shrub Expansion in North American Arctic Tundra. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 1683-1701.	3.0	38
99	Weaker land–climate feedbacks from nutrient uptake during photosynthesis-inactive periods. Nature Climate Change, 2018, 8, 1002-1006.	18.8	37
100	Mathematical treatment of isotopologue and isotopomer speciation and fractionation in biochemical kinetics. Geochimica Et Cosmochimica Acta, 2010, 74, 1823-1835.	3.9	36
101	Active-Layer Thickness across Alaska: Comparing Observation-Based Estimates with CMIP5 Earth System Model Predictions. Soil Science Society of America Journal, 2014, 78, 894-902.	2.2	36
102	The changing faces of soil organic matter research. European Journal of Soil Science, 2018, 69, 23-30.	3.9	35
103	Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models. Biogeosciences, 2014, 11, 6969-6983.	3.3	34
104	The fan of influence of streams and channel feedbacks to simulated land surface water and carbon dynamics. Water Resources Research, 2016, 52, 880-902.	4.2	34
105	Substantial hysteresis in emergent temperature sensitivity of global wetland CH4 emissions. Nature Communications, 2021, 12, 2266.	12.8	34
106	Seasonal and interannual variations of carbon and oxygen isotopes of respired CO2in a tallgrass prairie: Measurements and modeling results from 3 years with contrasting water availability. Journal of Geophysical Research, 2006, 111, .	3.3	33
107	Boreal lakes moderate seasonal and diurnal temperature variation and perturb atmospheric circulation: analyses in the Community Earth System Model 1 (CESM1). Tellus, Series A: Dynamic Meteorology and Oceanography, 2022, 64, 15639.	1.7	31
108	Influence of terrestrial ecosystems and topography on coastal CO2measurements: A case study at Trinidad Head, California. Journal of Geophysical Research, 2005, 110, .	3.3	30

#	Article	IF	CITATIONS
109	Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis. Biogeosciences, 2013, 10, 6893-6909.	3.3	30
110	Seasonal and Interannual Patterns and Controls of Hydrological Fluxes in an Amazon Floodplain Lake With a Surface‧ubsurface Process Model. Water Resources Research, 2019, 55, 3056-3075.	4.2	30
111	Regional CO ₂ and latent heat surface fluxes in the Southern Great Plains: Measurements, modeling, and scaling. Journal of Geophysical Research, 2009, 114, .	3.3	29
112	Impacts of Agricultural Nitrogen on the Environment and Strategies to Reduce these Impacts. Procedia Environmental Sciences, 2015, 29, 303.	1.4	29
113	Windthrow Variability in Central Amazonia. Atmosphere, 2017, 8, 28.	2.3	29
114	21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory. Environmental Research Letters, 2018, 13, 054029.	5.2	29
115	Separating the effects of phenology and diffuse radiation on gross primary productivity in winter wheat. Journal of Geophysical Research G: Biogeosciences, 2016, 121, 1903-1915.	3.0	28
116	Improving Representation of Deforestation Effects on Evapotranspiration in the E3SM Land Model. Journal of Advances in Modeling Earth Systems, 2019, 11, 2412-2427.	3.8	28
117	Representing plant diversity in land models: An evolutionary approach to make "Functional Types― more functional. Global Change Biology, 2022, 28, 2541-2554.	9.5	28
118	Impacts of a new bareâ€soil evaporation formulation on site, regional, and global surface energy and water budgets in CLM4. Journal of Advances in Modeling Earth Systems, 2013, 5, 558-571.	3.8	26
119	A Theory of Effective Microbial Substrate Affinity Parameters in Variably Saturated Soils and an Example Application to Aerobic Soil Heterotrophic Respiration. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 918-940.	3.0	26
120	Soil-gas entry into houses driven by atmospheric pressure fluctuations—The influence of soil properties. Atmospheric Environment, 1997, 31, 1487-1495.	4.1	25
121	A modeling study of the impact of the δ18O value of near-surface soil water on the δ18O value of the soil-surface CO2 flux. Geochimica Et Cosmochimica Acta, 2005, 69, 1939-1946.	3.9	25
122	Coupling a three-dimensional subsurface flow and transport model with a land surface model to simulate stream–aquifer–land interactions (CPÂv1.0). Geoscientific Model Development, 2017, 10, 4539-4562.	3.6	25
123	Competitor and substrate sizes and diffusion together define enzymatic depolymerization and microbial substrate uptake rates. Soil Biology and Biochemistry, 2019, 139, 107624.	8.8	25
124	Size Distributions of Arctic Waterbodies Reveal Consistent Relations in Their Statistical Moments in Space and Time. Frontiers in Earth Science, 2019, 7, .	1.8	25
125	Aqueous and gaseous nitrogen losses induced by fertilizer application. Journal of Geophysical Research, 2009, 114, .	3.3	24
126	A multi-scale comparison of modeled and observed seasonal methane emissions in northern wetlands. Biogeosciences, 2016, 13, 5043-5056.	3.3	24

#	Article	IF	CITATIONS
127	Methane Production Pathway Regulated Proximally by Substrate Availability and Distally by Temperature in a High‣atitude Mire Complex. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 3057-3074.	3.0	24
128	Using boundary layer equilibrium to reduce uncertainties in transport models and CO ₂ flux inversions. Atmospheric Chemistry and Physics, 2011, 11, 9631-9641.	4.9	23
129	Toward improved model structures for analyzing priming: potential pitfalls of using bulk turnover time. Global Change Biology, 2015, 21, 4298-4302.	9.5	23
130	The Central Amazon Biomass Sink Under Current and Future Atmospheric CO ₂ : Predictions From Big‣eaf and Demographic Vegetation Models. Journal of Geophysical Research G: Biogeosciences, 2020, 125, e2019JC005500.	3.0	23
131	Transient competitive complexation in biological kinetic isotope fractionation explains nonsteady isotopic effects: Theory and application to denitrification in soils. Journal of Geophysical Research, 2009, 114, .	3.3	22
132	A reduced-order modeling approach to represent subgrid-scale hydrological dynamics for land-surface simulations: application in a polygonal tundra landscape. Geoscientific Model Development, 2014, 7, 2091-2105.	3.6	22
133	Temporal evolution of soil moisture statistical fractal and controls by soil texture and regional groundwater flow. Advances in Water Resources, 2015, 86, 155-169.	3.8	22
134	Development and evaluation of a variably saturated flow model in the global E3SM Land Model (ELM) version 1.0. Geoscientific Model Development, 2018, 11, 4085-4102.	3.6	22
135	Ensemble Machine Learning Approach Improves Predicted Spatial Variation of Surface Soil Organic Carbon Stocks in Data-Limited Northern Circumpolar Region. Frontiers in Big Data, 2020, 3, 528441.	2.9	22
136	Deforestation triggering irreversible transition in Amazon hydrological cycle. Environmental Research Letters, 2022, 17, 034037.	5.2	22
137	Seasonal and interannual variability in ¹³ C composition of ecosystem carbon fluxes in the U.S. Southern Great Plains. Tellus, Series B: Chemical and Physical Meteorology, 2022, 63, 181.	1.6	21
138	Accurate and efficient prediction of fineâ€resolution hydrologic and carbon dynamic simulations from coarseâ€resolution models. Water Resources Research, 2016, 52, 791-812.	4.2	21
139	Attribution of changes in global wetland methane emissions from pre-industrial to present using CLM4.5-BGC. Environmental Research Letters, 2016, 11, 034020.	5.2	21
140	SUPECA kinetics for scaling redox reactions in networks of mixed substrates and consumers and an example application to aerobic soil respiration. Geoscientific Model Development, 2017, 10, 3277-3295.	3.6	20
141	Evaluation of the WRF lake module (v1.0) and its improvements at a deep reservoir. Geoscientific Model Development, 2019, 12, 2119-2138.	3.6	20
142	Lineageâ€based functional types: characterising functional diversity to enhance the representation of ecological behaviour in Land Surface Models. New Phytologist, 2020, 228, 15-23.	7.3	20
143	Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden. Cryosphere, 2019, 13, 647-663.	3.9	19
144	Deforestation reshapes land-surface energy-flux partitioning. Environmental Research Letters, 2021, 16, 024014.	5.2	19

#	Article	IF	CITATIONS
145	Hysteretic temperature sensitivity of wetland CH ₄ fluxes explained by substrate availability and microbial activity. Biogeosciences, 2020, 17, 5849-5860.	3.3	19
146	Observed and Simulated Sensitivities of Spring Greenup to Preseason Climate in Northern Temperate and Boreal Regions. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 60-78.	3.0	18
147	Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments. Nature Communications, 2020, 11, 5798.	12.8	18
148	Spatiotemporal Assessment of GHG Emissions and Nutrient Sequestration Linked to Agronutrient Runoff in Global Wetlands. Global Biogeochemical Cycles, 2021, 35, e2020GB006816.	4.9	18
149	Nitrogen Cycling in an Irrigated Wheat System in Sonora, Mexico: Measurements and Modeling. Nutrient Cycling in Agroecosystems, 2006, 75, 175-186.	2.2	17
150	Interannual Variation in Hydrologic Budgets in an Amazonian Watershed with a Coupled Subsurface–Land Surface Process Model. Journal of Hydrometeorology, 2017, 18, 2597-2617.	1.9	17
151	Impacts of microtopographic snow redistribution and lateral subsurface processes on hydrologic and thermal states in an Arctic polygonal ground ecosystem: a case study using ELM-3D v1.0. Geoscientific Model Development, 2018, 11, 61-76.	3.6	17
152	Modeling Climate Change Impacts on an Arctic Polygonal Tundra: 1. Rates of Permafrost Thaw Depend on Changes in Vegetation and Drainage. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1308-1322.	3.0	17
153	Understanding the Stable Isotope Composition of Biosphere-Atmosphere CO2Exchange. Eos, 2008, 89, 94.	0.1	16
154	Soil Organic Matter Temperature Sensitivity Cannot be Directly Inferred From Spatial Gradients. Global Biogeochemical Cycles, 2019, 33, 761-776.	4.9	16
155	Understanding and reducing the uncertainties of land surface energy flux partitioning within CMIP6 land models. Agricultural and Forest Meteorology, 2022, 319, 108920.	4.8	16
156	Deep Unsaturated Zone Contributions to Carbon Cycling in Semiarid Environments. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 3045-3054.	3.0	15
157	Predicted Land Carbon Dynamics Are Strongly Dependent on the Numerical Coupling of Nitrogen Mobilizing and Immobilizing Processes: A Demonstration with the E3SM Land Model. Earth Interactions, 2018, 22, 1-18.	1.5	15
158	Modeling Climate Change Impacts on an Arctic Polygonal Tundra: 2. Changes in CO ₂ and CH ₄ Exchange Depend on Rates of Permafrost Thaw as Affected by Changes in Vegetation and Drainage. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1323-1341.	3.0	15
159	Modeling Green Roof Potential to Mitigate Urban Flooding in a Chinese City. Water (Switzerland), 2020, 12, 2082.	2.7	15
160	Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland. Science of the Total Environment, 2022, 820, 152757.	8.0	15
161	Assessing Impacts of Plant Stoichiometric Traits on Terrestrial Ecosystem Carbon Accumulation Using the E3SM Land Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001841.	3.8	14
162	Estimating Contaminant Dose for Intermittent Dermal Contact: Model Development, Testing, and Application. Risk Analysis, 2004, 24, 73-85.	2.7	13

#	Article	IF	CITATIONS
163	Linear two-pool models are insufficient to infer soil organic matter decomposition temperature sensitivity from incubations. Biogeochemistry, 2020, 149, 251-261.	3.5	13
164	Topographical Controls on Hillslopeâ€Scale Hydrology Drive Shrub Distributions on the Seward Peninsula, Alaska. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005823.	3.0	13
165	Non-growing season plant nutrient uptake controls Arctic tundra vegetation composition under future climate. Environmental Research Letters, 2021, 16, 074047.	5.2	13
166	Finding Liebig's law of the minimum. Ecological Applications, 2021, 31, e02458.	3.8	13
167	Building a machine learning surrogate model for wildfire activities within a global Earth system model. Geoscientific Model Development, 2022, 15, 1899-1911.	3.6	13
168	Hourly and daily rainfall intensification causes opposing effects on C and N emissions, storage, and leaching in dry and wet grasslands. Biogeochemistry, 2019, 144, 197-214.	3.5	12
169	Heterogeneous spring phenology shifts affected by climate: supportive evidence from two remotely sensed vegetation indices. Environmental Research Communications, 2019, 1, 091004.	2.3	12
170	More fertilizer and impoverished roots required for improving wheat yields and profits under climate change. Field Crops Research, 2020, 249, 107756.	5.1	12
171	Biochemical modeling of microbial memory effects and catabolite repression on soil organic carbon compounds. Soil Biology and Biochemistry, 2019, 128, 1-12.	8.8	11
172	Wetter California Projected by CMIP6 Models With Observational Constraints Under a High GHG Emission Scenario. Earth's Future, 2022, 10, .	6.3	11
173	Technical Note: Simple formulations and solutions of the dual-phase diffusive transport for biogeochemical modeling. Biogeosciences, 2014, 11, 3721-3728.	3.3	9
174	Comparison With Global Soil Radiocarbon Observations Indicates Needed Carbon Cycle Improvements in the E3SM Land Model. Journal of Geophysical Research G: Biogeosciences, 2019, 124, 1098-1114.	3.0	9
175	On the modeling paradigm of plant root nutrient acquisition. Plant and Soil, 2021, 459, 441-451.	3.7	9
176	Is there a ?forest filter effect? for organic pollutants?. Stochastic Environmental Research and Risk Assessment, 2003, 17, 231-234.	4.0	8
177	Local and Remote Climate Impacts from Expansion of Woody Biomass for Bioenergy Feedstock in the Southeastern United States. Journal of Climate, 2012, 25, 7643-7659.	3.2	8
178	The effect of temperature on the rate, affinity, and 15N fractionation of NO3 â^' during biological denitrification in soils. Biogeochemistry, 2015, 124, 235-253.	3.5	8
179	A Hybrid Reducedâ€Order Model of Fineâ€Resolution Hydrologic Simulations at a Polygonal Tundra Site. Vadose Zone Journal, 2016, 15, 1-14.	2.2	8
180	Using Information Theory to Evaluate Directional Precipitation Interactions Over the West Sahel Region in Observations and Models. Journal of Geophysical Research D: Atmospheres, 2019, 124, 1463-1473.	3.3	8

#	Article	IF	CITATIONS
181	Effect of Cover Crop on Carbon Distribution in Size and Density Separated Soil Aggregates. Soil Systems, 2020, 4, 6.	2.6	8
182	Coupling plant litter quantity to a novel metric for litter quality explains C storage changes in a thawing permafrost peatland. Global Change Biology, 2021, , .	9.5	8
183	Impoverishing Roots Will Improve Wheat Yield and Profitability Through Increased Water and Nitrogen Use Efficiencies. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG005829.	3.0	7
184	Landsat near-infrared (NIR) band and ELM-FATES sensitivity to forest disturbances and regrowth in the Central Amazon. Biogeosciences, 2020, 17, 6185-6205.	3.3	7
185	New Methods of Energy Efficient Radon Mitigation. Health Physics, 1995, 68, 689-698.	0.5	6
186	Influences of the hydrological cycle on observed interannual variations in atmospheric CO ¹⁸ O. Journal of Geophysical Research, 2011, 116, .	3.3	6
187	The response of the180/160 composition of atmospheric CO2to changes in environmental conditions. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 55-79.	3.0	6
188	Statistical uncertainty of eddy covariance CO2 fluxes inferred using a residual bootstrap approach. Agricultural and Forest Meteorology, 2015, 206, 163-171.	4.8	6
189	Technical Note: A generic law-of-the-minimum flux limiter for simulating substrate limitation in biogeochemical models. Biogeosciences, 2016, 13, 723-735.	3.3	6
190	The Thermodynamic Links between Substrate, Enzyme, and Microbial Dynamics in Michaelis–Menten–Monod Kinetics. International Journal of Chemical Kinetics, 2018, 50, 343-356.	1.6	6
191	Mathematical Reconstruction of Land Carbon Models From Their Numerical Output: Computing Soil Radiocarbon From C Dynamics. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001776.	3.8	6
192	Warm-season net CO2 uptake outweighs cold-season emissions over Alaskan North Slope tundra under current and RCP8.5 climate. Environmental Research Letters, 2021, 16, 055012.	5.2	6
193	Microbial contribution to post-fire tundra ecosystem recovery over the 21st century. Communications Earth & Environment, 2022, 3, .	6.8	6
194	Dispersal and fire limit Arctic shrub expansion. Nature Communications, 2022, 13, .	12.8	6
195	Using model reduction to predict the soil-surface C ¹⁸ OO flux: an example of representing complex biogeochemical dynamics in a computationally efficient manner. Geoscientific Model Development, 2013, 6, 345-352.	3.6	5
196	Hydrologic control of the oxygen isotope ratio of ecosystem respiration in a semi-arid woodland. Biogeosciences, 2013, 10, 4937-4956.	3.3	5
197	Development and Verification of a Numerical Library for Solving Global Terrestrial Multiphysics Problems. Journal of Advances in Modeling Earth Systems, 2019, 11, 1516-1542.	3.8	5

Simulation of Ecosystem C18OO Isotope Fluxes in A Tallgrass Prairie. , 2005, , 154-170.

5

#	Article	IF	CITATIONS
199	The IsoGenie database: an interdisciplinary data management solution for ecosystems biology and environmental research. PeerJ, 0, 8, e9467.	2.0	5
200	Improved ELMv1-ECA simulations of zero-curtain periods and cold-season CH ₄ and CO ₂ emissions at Alaskan Arctic tundra sites. Cryosphere, 2021, 15, 5281-5307.	3.9	5
201	Rapidly changing high-latitude seasonality: implications for the 21st century carbon cycle in Alaska. Environmental Research Letters, 2022, 17, 014032.	5.2	5
202	Carbon Accumulation, Flux, and Fate in Stordalen Mire, a Permafrost Peatland in Transition. Global Biogeochemical Cycles, 2022, 36, .	4.9	5
203	Biases in regional carbon budgets from covariation of surface fluxes and weather in transport model inversions. Atmospheric Chemistry and Physics, 2014, 14, 1571-1585.	4.9	4
204	A method of alternating characteristics with application to advection-dominated environmental systems. Computational Geosciences, 2018, 22, 851-865.	2.4	3
205	The influence of fire aerosols on surface climate and gross primary production in the Energy Exascale Earth System Model (E3SM). Journal of Climate, 2021, , 1-60.	3.2	3
206	Guidelines for Publicly Archiving Terrestrial Model Data to Enhance Usability, Intercomparison, and Synthesis. Data Science Journal, 2022, 21, 3.	1.3	3
207	Near Activation and Differential Activation in Enzymatic Reactions. International Journal of Chemical Kinetics, 2017, 49, 305-318.	1.6	2
208	Scale matters in understanding the complexity of Amazon fires: A response to the Editor. Global Change Biology, 2021, 27, e2-e4.	9.5	2
209	Conceptualizing Biogeochemical Reactions With an Ohm's Law Analogy. Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002469.	3.8	2
210	Spatiotemporal Variations of Evapotranspiration in Amazonia Using the Wavelet Phase Difference Analysis. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
211	The Rainfall Sensitivity of Tropical Net Primary Production in CMIP5 Twentieth- and Twenty-First-Century Simulations*. Journal of Climate, 2015, 28, 9313-9331.	3.2	1
212	Hierarchical sensitivity analysis for a large-scale process-based hydrological model applied to an Amazonian watershed. Hydrology and Earth System Sciences, 2020, 24, 4971-4996.	4.9	1
213	Supporting hierarchical soil biogeochemical modeling: version 2 of the Biogeochemical Transport and Reaction model (BeTR-v2). Geoscientific Model Development, 2022, 15, 1619-1632.	3.6	1
214	11. Abiotic and Biotic Controls on Soil Organo–Mineral Interactions: Developing Model Structures to Analyze Why Soil Organic Matter Persists. , 2019, , 329-348.		0