Mohammad Said Saidi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604942/publications.pdf

Version: 2024-02-01

52 papers 840 citations

16 h-index 27 g-index

52 all docs 52 docs citations

times ranked

52

1241 citing authors

#	Article	IF	Citations
1	Spheroids-on-a-chip: Recent advances and design considerations in microfluidic platforms for spheroid formation and culture. Sensors and Actuators B: Chemical, 2018, 263, 151-176.	7.8	175
2	Organ-Tumor-on-a-Chip for Chemosensitivity Assay: A Critical Review. Micromachines, 2016, 7, 130.	2.9	67
3	Prediction of Necrotic Core and Hypoxic Zone of Multicellular Spheroids in a Microbioreactor with a U-Shaped Barrier. Micromachines, 2018, 9, 94.	2.9	52
4	Novel approaches in cancer management with circulating tumor cell clusters. Journal of Science: Advanced Materials and Devices, 2019, 4, 1-18.	3.1	41
5	Spiral microchannel with stair-like cross section for size-based particle separation. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	39
6	Simple, Cost-Effective, and Continuous 3D Dielectrophoretic Microchip for Concentration and Separation of Bioparticles. Industrial & Engineering Chemistry Research, 2020, 59, 3772-3783.	3.7	31
7	Fabrication and characterization of low-cost, bead-free, durable and hydrophobic electrospun membrane for 3D cell culture. Biomedical Microdevices, 2017, 19, 74.	2.8	30
8	Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: A mechanical point of view. Biocybernetics and Biomedical Engineering, 2019, 39, 188-198.	5.9	25
9	An integrated microfluidic concentration gradient generator for mechanical stimulation and drug delivery. Journal of Science: Advanced Materials and Devices, 2021, 6, 280-290.	3.1	24
10	A new non-dimensional parameter to obtain the minimum mixing length in tree-like concentration gradient generators. Chemical Engineering Science, 2019, 195, 120-126.	3.8	22
11	A numerical study of the effects of blood rheology and vessel deformability on the hemodynamics of carotid bifurcation. Scientia Iranica, 2012, 19, 119-126.	0.4	21
12	Numerical Simulation of the Behavior of Toroidal and Spheroidal Multicellular Aggregates in Microfluidic Devices with Microwell and U-Shaped Barrier. Micromachines, 2017, 8, 358.	2.9	21
13	Challenge in particle delivery to cells in a microfluidic device. Drug Delivery and Translational Research, 2018, 8, 830-842.	5.8	21
14	A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip. Biomicrofluidics, 2018, 12, 024117.	2.4	19
15	A tool for designing tree-like concentration gradient generators for lab-on-a-chip applications. Chemical Engineering Science, 2020, 212, 115339.	3.8	19
16	Modeling of two-phase flow in porous media with heat generation. International Journal of Multiphase Flow, 2015, 69, 115-127.	3.4	17
17	Three-Dimensional Modeling of Avascular Tumor Growth in Both Static and Dynamic Culture Platforms. Micromachines, 2019, 10, 580.	2.9	17
18	Transport and deposition of pharmaceutical particles in three commercial spacer–MDI combinations. Computers in Biology and Medicine, 2014, 54, 145-155.	7.0	16

#	Article	IF	CITATIONS
19	A lagged implicit segregated data reconstruction procedure to treat open boundaries. Journal of Computational Physics, 2010, 229, 5418-5431.	3.8	13
20	Fabrication of a microdialysis-based nonenzymatic microfluidic sensor for regular glucose measurement. Sensors and Actuators B: Chemical, 2021, 333, 129569.	7.8	13
21	A multiscale approach for determining the morphology of endothelial cells at a coronary artery. International Journal for Numerical Methods in Biomedical Engineering, 2017, 33, e2891.	2.1	11
22	Physically based wall boundary condition for dissipative particle dynamics. Microfluidics and Nanofluidics, 2014, 17, 181-198.	2.2	10
23	Inventions and Innovations in Preclinical Platforms for Cancer Research. Inventions, 2018, 3, 43.	2.5	10
24	An Interface–Particle Interaction Approach for Evaluation of the Co-Encapsulation Efficiency of Cells in a Flow-Focusing Droplet Generator. Sensors, 2020, 20, 3774.	3.8	10
25	High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section. Biosensors, 2021, 11, 406.	4.7	10
26	Enrichment of cancer stem-like cells by controlling oxygen, glucose and fluid shear stress in a microfluidic spheroid culture device. Journal of Science: Advanced Materials and Devices, 2022, 7, 100439.	3.1	10
27	A microfabricated platform for the study of chondrogenesis under different compressive loads. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 78, 404-413.	3.1	9
28	Continuous size-based focusing and bifurcating microparticle streams using a negative dielectrophoretic system. Microfluidics and Nanofluidics, 2013, 14, 265-276.	2.2	8
29	Pulsatile blood flow in total cavopulmonary connection: a comparison between Y-shaped and T-shaped geometry. Medical and Biological Engineering and Computing, 2017, 55, 213-224.	2.8	8
30	Efficient batch-mode mixing and flow patterns in a microfluidic centrifugal platform: a numerical and experimental study. Microsystem Technologies, 2017, 23, 2767-2779.	2.0	8
31	Enhancement of surface adsorption-desorption rates in microarrays invoking surface charge heterogeneity. Sensors and Actuators B: Chemical, 2017, 242, 956-964.	7.8	8
32	FSI SIMULATION OF A HEALTHY CORONARY BIFURCATION FOR STUDYING THE MECHANICAL STIMULI OF ENDOTHELIAL CELLS UNDER DIFFERENT PHYSIOLOGICAL CONDITIONS. Journal of Mechanics in Medicine and Biology, 2015, 15, 1550089.	0.7	7
33	Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell. Journal of Biomechanics, 2018, 67, 37-45.	2.1	7
34	A microfluidic concentration gradient generator for simultaneous delivery of two reagents on a millimeter-sized sample. Journal of Flow Chemistry, 2020, 10, 615-625.	1.9	6
35	Three-dimensional simulation of urine concentrating mechanism in a functional unit of rat outer medulla. I. Model structure and base case results. Mathematical Biosciences, 2014, 258, 44-56.	1.9	5
36	A mechanical model for morphological response of endothelial cells under combined wall shear stress and cyclic stretch loadings. Biomechanics and Modeling in Mechanobiology, 2016, 15, 1229-1243.	2.8	5

#	Article	IF	Citations
37	Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model. Bulletin of Mathematical Biology, 2015, 77, 1813-1832.	1.9	4
38	Investigation of the different parameters contributing to bubble sticking inside physiological bifurcations. Medical and Biological Engineering and Computing, 2022, 60, 599-618.	2.8	4
39	Design of the micropump and mass-transfer compartment of a microfluidic system for regular nonenzymatic glucose measurement. Biotechnology Reports (Amsterdam, Netherlands), 2022, 34, e00723.	4.4	4
40	Continuum model of actin-myosin flow. , 2013, , .		3
41	Atheroprone sites of coronary artery bifurcation: Effect of heart motion on hemodynamics-dependent monocytes deposition. Computers in Biology and Medicine, 2021, 133, 104411.	7.0	3
42	Heat Transfer Enhancement in Perturbed Laminar Flow About a Cylinder. Heat Transfer Engineering, 2004, 25, 63-73.	1.9	2
43	Modeling of laser thermal and hydrodynamic effects on a dilute suspension of micro-particles in water. Journal of Mechanical Science and Technology, 2014, 28, 1017-1026.	1.5	2
44	Analytical Solutions of Actin-Retrograde-Flow in a Circular Stationary Cell: A Mechanical Point of View. Bulletin of Mathematical Biology, 2014, 76, 744-760.	1.9	1
45	Numerical modeling of ureagenesis in a microfluidic channel mimicking a liver lobule. , 2015, , .		1
46	Numerical simulation of a microfluidic system for regular glucose measurement. , 2019, , .		1
47	Modeling of photoplethysmography signal for quantitative analysis of endothelial cells during reactive hyperemia., 2012,,.		O
48	Electrophoretic velocity of spherical particles in Quemada fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 225-230.	4.7	0
49	A New Boundary Model for Simulating Complex and Flexible Wall Bounded Domain in Dissipative Particle Dynamics. Advances in Mathematical Physics, 2014, 2014, 1-6.	0.8	O
50	Urine concentrating mechanism modelling in rat kidney inner medulla. , 2016, , .		0
51	A Computational Model for Estimation of Mechanical Parameters in Chemotactic Endothelial Cells. Scientia Iranica, 2016, 23, 260-267.	0.4	0
52	Endothelial Cells Morphology in Response to Combined WSS and Biaxial CS: Introduction of Effective Strain Ratio. Cellular and Molecular Bioengineering, 2020, 13, 647-657.	2.1	0