Anton Gisterå

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604883/publications.pdf

Version: 2024-02-01

516681 477281 1,986 31 16 29 citations h-index g-index papers 32 32 32 3399 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition of IL17A Using an Affibody Molecule Attenuates Inflammation in ApoE-Deficient Mice. Frontiers in Cardiovascular Medicine, 2022, 9, 831039.	2.4	0
2	The Spectrum of B Cell Functions in Atherosclerotic Cardiovascular Disease. Frontiers in Cardiovascular Medicine, 2022, 9, 864602.	2.4	9
3	Genetic Deficiency of Indoleamine 2,3-dioxygenase Aggravates Vascular but Not Liver Disease in a Nonalcoholic Steatohepatitis and Atherosclerosis Comorbidity Model. International Journal of Molecular Sciences, 2022, 23, 5203.	4.1	3
4	Animal Models of Atherosclerosis–Supportive Notes and Tricks of the Trade. Circulation Research, 2022, 130, 1869-1887.	4.5	26
5	AMPA-Type Glutamate Receptors Associated With Vascular Smooth Muscle Cell Subpopulations in Atherosclerosis and Vascular Injury. Frontiers in Cardiovascular Medicine, 2021, 8, 655869.	2.4	7
6	Platelets enhance CD4+ central memory T cell responses via platelet factor 4-dependent mitochondrial biogenesis and cell proliferation. Platelets, 2021, , 1-11.	2.3	7
7	3-Hydroxyanthralinic acid metabolism controls the hepatic SREBP/lipoprotein axis, inhibits inflammasome activation in macrophages, and decreases atherosclerosis in Ldlrâ^'/â^' mice. Cardiovascular Research, 2020, 116, 1948-1957.	3.8	29
8	Platelet factor 4 enhances CD4+ T effector memory cell responses via Aktâ€PGC1αâ€TFAM signalingâ€mediated mitochondrial biogenesis. Journal of Thrombosis and Haemostasis, 2020, 18, 2685-2700.	3.8	18
9	<p>Molecular Imaging of Inflammation in a Mouse Model of Atherosclerosis Using a Zirconium-89-Labeled Probe</p> . International Journal of Nanomedicine, 2020, Volume 15, 6137-6152.	6.7	8
10	Treatment with a Tollâ€like Receptor 7 ligand evokes protective immunity against atherosclerosis in hypercholesterolaemic mice. Journal of Internal Medicine, 2020, 288, 321-334.	6.0	11
11	Quantification of Atherosclerosis in Mice. Journal of Visualized Experiments, 2019, , .	0.3	21
12	Inflammasome-Driven Interleukin- $1\hat{l}\pm$ and \hat{A} Interleukin- $1\hat{l}^2$ Production in Atherosclerotic Plaques Relates to Hyperlipidemia and Plaque Complexity. JACC Basic To Translational Science, 2019, 4, 304-317.	4.1	22
13	Prevention of radiotherapy-induced arterial inflammation by interleukin-1 blockade. European Heart Journal, 2019, 40, 2495-2503.	2.2	44
14	Lipid-driven immunometabolic responses in atherosclerosis. Current Opinion in Lipidology, 2018, 29, 375-380.	2.7	33
15	Low-Density Lipoprotein-Reactive T Cells Regulate Plasma Cholesterol Levels and Development of Atherosclerosis in Humanized Hypercholesterolemic Mice. Circulation, 2018, 138, 2513-2526.	1.6	49
16	Susceptibility of low-density lipoprotein particles to aggregate depends on particle lipidome, is modifiable, and associates with future cardiovascular deaths. European Heart Journal, 2018, 39, 2562-2573.	2.2	126
17	ERV1/ChemR23 Signaling Protects Against Atherosclerosis by Modifying Oxidized Low-Density Lipoprotein Uptake and Phagocytosis in Macrophages. Circulation, 2018, 138, 1693-1705.	1.6	106
18	Acute Loss of Apolipoprotein E Triggers an Autoimmune Response That Accelerates Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, e145-e158.	2.4	38

ANTON GISTERÃ¥

#	Article	IF	CITATIONS
19	Vaccination against Tâ€eell epitopes of native ApoB100 reduces vascular inflammation and disease in a humanized mouse model of atherosclerosis. Journal of Internal Medicine, 2017, 281, 383-397.	6.0	51
20	The immunology of atherosclerosis. Nature Reviews Nephrology, 2017, 13, 368-380.	9.6	667
21	Hypercholesterolemia Induces Differentiation of Regulatory T Cells in the Liver. Circulation Research, 2017, 120, 1740-1753.	4.5	55
22	Hypercholesterolemia Enhances T Cell Receptor Signaling and Increases the Regulatory T Cell Population. Scientific Reports, 2017, 7, 15655.	3.3	51
23	Increased Carotid Artery Lesion Inflammation Upon Treatment With the CD137 Agonistic Antibody 2A. Circulation Journal, 2017, 81, 1945-1952.	1.6	6
24	Inhibition of indoleamine 2,3-dioxygenase promotes vascular inflammation and increases atherosclerosis in Apoeâ^'/â^' mice. Cardiovascular Research, 2015, 106, 295-302.	3.8	77
25	Immunostaining of Lymphocytes in Mouse Atherosclerotic Plaque. Methods in Molecular Biology, 2015, 1339, 149-159.	0.9	13
26	Abstract 368: Inhibition of Ido-mediated Tryptophan Metabolism Aggravates Atherosclerosis in Hypercholesterolemic Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	2.4	1
27	Transforming growth factor-beta signaling in t cells promotes stabilization of atherosclerotic plaques through an interleukin-17 dependent pathway. Atherosclerosis, 2014, 235, e88-e89.	0.8	6
28	Inhibition of indoleamine 2,3-dioxygenase-mediated tryptophan catabolism accelerates atherosclerosis in hypercholesterolemic mice. Atherosclerosis, 2014, 235, e140.	0.8	0
29	Transforming Growth Factor–β Signaling in T Cells Promotes Stabilization of Atherosclerotic Plaques Through an Interleukin-17–Dependent Pathway. Science Translational Medicine, 2013, 5, 196ra100.	12.4	162
30	Depletion of FOXP3+ regulatory T cells promotes hypercholesterolemia and atherosclerosis. Journal of Clinical Investigation, 2013, 123, 1323-1334.	8.2	304
31	T Cell-based Therapies for Atherosclerosis. Current Pharmaceutical Design, 2013, 19, 5850-5858.	1.9	36