Jorge Perez-Juste

List of Publications by Citations

Source: https://exaly.com/author-pdf/4604554/jorge-perez-juste-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 189
 17,198
 69
 129

 papers
 citations
 h-index
 g-index

 201
 19,283
 9
 6.66

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
189	Gold nanorods: Synthesis, characterization and applications. <i>Coordination Chemistry Reviews</i> , 2005 , 249, 1870-1901	23.2	1640
188	Shape control in gold nanoparticle synthesis. <i>Chemical Society Reviews</i> , 2008 , 37, 1783-91	58.5	1571
187	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000
186	Recent progress on silica coating of nanoparticles and related nanomaterials. <i>Advanced Materials</i> , 2010 , 22, 1182-95	24	613
185	Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. <i>Advanced Functional Materials</i> , 2004 , 14, 571-579	15.6	504
184	Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods. <i>Chemistry of Materials</i> , 2006 , 18, 2465-2467	9.6	347
183	Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. <i>Advanced Materials</i> , 2006 , 18, 2529-2534	24	329
182	Seeded growth of submicron Au colloids with quadrupole plasmon resonance modes. <i>Langmuir</i> , 2006 , 22, 7007-10	4	316
181	Spatially-directed oxidation of gold nanoparticles by Au(III)-CTAB complexes. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 14257-61	3.4	289
180	Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultra-sensitive analysis. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 138-43	16.4	263
179	Hydrophobic interactions modulate self-assembly of nanoparticles. ACS Nano, 2012, 6, 11059-65	16.7	257
178	Size tunable Au@Ag core-shell nanoparticles: synthesis and surface-enhanced Raman scattering properties. <i>Langmuir</i> , 2013 , 29, 15076-82	4	255
177	Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 35-	4 <u>ð.</u> 6	253
176	A "Tips and Tricks" Practical Guide to the Synthesis of Gold Nanorods. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 4270-9	6.4	251
175	Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. <i>Small</i> , 2007 , 3, 1222-9	11	240
174	Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels. <i>Advanced Materials</i> , 2008 , 20, 1666-1670	24	234
173	Optical Control and Patterning of Gold-Nanorod P oly(vinyl alcohol) Nanocomposite Films. <i>Advanced Functional Materials</i> , 2005 , 15, 1065-1071	15.6	234

(2009-2016)

172	Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. <i>Nature Materials</i> , 2016 , 15, 1203-1211	27	222
171	Aligning Au nanorods by using carbon nanotubes as templates. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 4375-8	16.4	216
170	Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 9484-8	16.4	192
169	Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 7460	7.1	177
168	Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles. <i>Langmuir</i> , 2009 , 25, 13894-9	4	176
167	Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. <i>Chemical Communications</i> , 2015 , 51, 4572-5	5.8	154
166	Catalysis by [email´protected] Nanocomposites: Effect of the Cross-Linking Density. <i>Chemistry of Materials</i> , 2010 , 22, 3051-3059	9.6	152
165	Size-dependent surface plasmon resonance broadening in nonspherical nanoparticles: single gold nanorods. <i>Nano Letters</i> , 2013 , 13, 2234-40	11.5	147
164	Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Cross-linking, Overall Dimensions, and Core Growth. <i>Advanced Functional Materials</i> , 2009 , 19, 3070-3076	15.6	136
163	The crystalline structure of gold nanorods revisited: evidence for higher-index lateral facets. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9397-400	16.4	131
162	Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging. <i>Plasmonics</i> , 2006 , 1, 61-66	2.4	129
161	Au@Ag Nanoparticles: Halides Stabilize {100} Facets. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 220	9 <i>6</i> 2 7 16	126
160	Modulation of Localized Surface Plasmons and SERS Response in Gold Dumbbells through Silver Coating. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10417-10423	3.8	118
159	Chemical sharpening of gold nanorods: the rod-to-octahedron transition. <i>Angewandte Chemie - International Edition</i> , 2007 , 46, 8983-7	16.4	117
158	Plasmonic polymer nanocomposites. <i>Nature Reviews Materials</i> , 2018 , 3, 375-391	73.3	117
157	Influence of Iodide Ions on the Growth of Gold Nanorods: Tuning Tip Curvature and Surface Plasmon Resonance. <i>Advanced Functional Materials</i> , 2008 , 18, 3780-3786	15.6	112
156	Binary self-assembly of gold nanowires with nanospheres and nanorods. <i>Angewandte Chemie - International Edition</i> , 2010 , 49, 9985-9	16.4	111
155	Multiresponsive hybrid colloids based on gold nanorods and poly(NIPAM-co-allylacetic acid) microgels: temperature- and pH-tunable plasmon resonance. <i>Langmuir</i> , 2009 , 25, 3163-7	4	110

154	Optical Properties of Platinum-Coated Gold Nanorods. Journal of Physical Chemistry C, 2007, 111, 6183	-631 8 8	110
153	Influence of silver ions on the growth mode of platinum on gold nanorods. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3946-3951		110
152	Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. <i>Physical Chemistry Chemical Physics</i> , 2004 , 6, 5056-5060	3.6	110
151	Metal nanoparticles and supramolecular macrocycles: a tale of synergy. <i>Chemistry - A European Journal</i> , 2014 , 20, 10874-83	4.8	108
150	Plasmon coupling in layer-by-layer assembled gold nanorod films. <i>Langmuir</i> , 2007 , 23, 4606-11	4	108
149	The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. <i>Physical Chemistry Chemical Physics</i> , 2009 , 11, 5909-14	3.6	107
148	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. <i>Advanced Materials</i> , 2008 , 20, 4288-4293	24	103
147	Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. <i>CrystEngComm</i> , 2015 , 17, 3727-3762	3.3	100
146	Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 11152-11163	9.5	99
145	Protein/Polymer-Based Dual-Responsive Gold Nanoparticles with pH-Dependent Thermal Sensitivity. <i>Advanced Functional Materials</i> , 2012 , 22, 1436-1444	15.6	97
144	Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. <i>Journal of Materials Chemistry</i> , 2011 , 21, 11544		97
143	Highly transparent and conductive films of densely aligned ultrathin Au nanowire monolayers. <i>Nano Letters</i> , 2012 , 12, 6066-70	11.5	96
142	Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. <i>Nano Today</i> , 2010 , 5, 21-27	17.9	96
141	Encapsulation of Single Plasmonic Nanoparticles within ZIF-8 and SERS Analysis of the MOF Flexibility. <i>Small</i> , 2016 , 12, 3935-43	11	96
140	Self-Assembly of Au@Ag Nanorods Mediated by Gemini Surfactants for Highly Efficient SERS-Active Supercrystals. <i>Advanced Optical Materials</i> , 2013 , 1, 477-481	8.1	91
139	Multifunctional microgel magnetic/optical traps for SERS ultradetection. <i>Langmuir</i> , 2011 , 27, 4520-5	4	91
138	Crystal structure dependence of the elastic constants of gold nanorods. <i>Journal of Materials Chemistry</i> , 2006 , 16, 3957		91
137	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 13361-13366	3.8	90

(2004-2015)

136	Gold Nanorod-pNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties. <i>ACS Applied Materials & Samp; Interfaces</i> , 2015 , 7, 12530-8	9.5	87
135	Colloidal gold-catalyzed reduction of ferrocyanate (III) by borohydride ions: a model system for redox catalysis. <i>Langmuir</i> , 2010 , 26, 1271-7	4	86
134	Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. <i>Chemical Communications</i> , 2010 , 46, 6108-10	5.8	83
133	Rapid epitaxial growth of Ag on Au nanoparticles: from Au nanorods to core-shell Au@Ag octahedrons. <i>Chemistry - A European Journal</i> , 2010 , 16, 5558-63	4.8	79
132	Steric hindrance induces crosslike self-assembly of gold nanodumbbells. <i>Nano Letters</i> , 2012 , 12, 4380-4	11.5	78
131	Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. <i>Sensors and Actuators B: Chemical</i> , 2008 , 132, 107-115	8.5	78
130	Gold Nanooctahedra with Tunable Size and Microfluidic-Induced 3D Assembly for Highly Uniform SERS-Active Supercrystals. <i>Chemistry of Materials</i> , 2015 , 27, 8310-8317	9.6	75
129	Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11453-6	16.4	75
128	Ordered arrays of gold nanostructures from interfacially assembled Au@PNIPAM hybrid nanoparticles. <i>Langmuir</i> , 2012 , 28, 8985-93	4	75
127	Quasi-Epitaxial Growth of Ni Nanoshells on Au Nanorods. <i>Advanced Materials</i> , 2007 , 19, 2262-2266	24	75
126	Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 230-8	6.4	74
125	Growing Au/Ag nanoparticles within microgel colloids for improved surface-enhanced Raman scattering detection. <i>Chemistry - A European Journal</i> , 2010 , 16, 9462-7	4.8	72
124	Plasmonic Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. <i>Chemistry of Materials</i> , 2016 , 28, 9169-9180	9.6	71
123	Evidence for Hydrogen-Bonding-Directed Assembly of Gold Nanorods in Aqueous Solution. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1181-1185	6.4	69
122	Reversible assembly of metal nanoparticles induced by penicillamine. Dynamic formation of SERS hot spots. <i>Journal of Materials Chemistry</i> , 2011 , 21, 16880		69
121	Synthesis of multifunctional composite microgels via in situ Ni growth on pNIPAM-coated Au nanoparticles. <i>ACS Nano</i> , 2009 , 3, 3184-90	16.7	69
120	Silica gels with tailored, gold nanorod-driven optical functionalities. <i>Applied Surface Science</i> , 2004 , 226, 137-143	6.7	68
119	Determination of the Elastic Constants of Gold Nanorods Produced by Seed Mediated Growth. <i>Nano Letters</i> , 2004 , 4, 2493-2497	11.5	68

118	Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. <i>Nanoscale</i> , 2017 , 9, 2051-2058	7.7	67
117	Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. <i>Nanoscale</i> , 2017 , 9, 16645-16651	7.7	67
116	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 18623-18631	3.8	63
115	Gold nanoparticles for regulation of cell function and behavior. <i>Nano Today</i> , 2017 , 13, 40-60	17.9	61
114	Supported Pd Nanoparticles for Carbon Carbon Coupling Reactions. <i>Topics in Catalysis</i> , 2013 , 56, 1154-1	1 <i>3</i> 7. 9	61
113	Multifunctionality in metal@microgel colloidal nanocomposites. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 20-26	13	61
112	Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 24-7	6.4	60
111	Magnetic Noble Metal Nanocomposites with Morphology-Dependent Optical Response. <i>Chemistry of Materials</i> , 2007 , 19, 4415-4422	9.6	59
110	Au@pNIPAM SERRS Tags for Multiplex Immunophenotyping Cellular Receptors and Imaging Tumor Cells. <i>Small</i> , 2015 , 11, 4149-57	11	57
109	Micellization versus Cyclodextrin-Surfactant Complexation Financial support from the Direccili General de Enseinza Superior of Spain (project PB96-0954) and Xunta de Galicia (project PGIDT99 PXI30104B) is gratefully acknowledged. J. PJ. wishes to thank the Ministerio de Educacili y	16.4	55
108	Growth of pentatwinned gold nanorods into truncated decahedra. <i>Nanoscale</i> , 2010 , 2, 2377-83	7.7	52
107	Imaging Bacterial Interspecies Chemical Interactions by Surface-Enhanced Raman Scattering. <i>ACS Nano</i> , 2017 , 11, 4631-4640	16.7	49
106	Pt-Catalyzed Growth of Ni Nanoparticles in Aqueous CTAB Solution. <i>Chemistry of Materials</i> , 2008 , 20, 5399-5405	9.6	48
105	Using surface enhanced Raman scattering to analyze the interactions of protein receptors with bacterial quorum sensing modulators. <i>ACS Nano</i> , 2015 , 9, 5567-76	16.7	47
104	Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. <i>Nanoscale</i> , 2013 , 5, 4776-84	7.7	46
103	Basic hydrolysis of crystal violet in beta-cyclodextrin/surfactant mixed systems. <i>Langmuir</i> , 2004 , 20, 606	5-43	46
102	Vesicles accelerate proton transfer from carbon up to 850-fold. <i>Organic Letters</i> , 2000 , 2, 127-30	6.2	46
101	Acoustic Vibrations in Bimetallic Au@Pd Core-Shell Nanorods. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 613-9	6.4	45

(1998-2008)

100	Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry. <i>Physical Review B</i> , 2008 , 77,	3.3	45
99	Seedless Synthesis of Single Crystalline Au Nanoparticles with Unusual Shapes and Tunable LSPR in the near-IR. <i>Chemistry of Materials</i> , 2012 , 24, 1393-1399	9.6	44
98	Plasmonic Supercrystals. Accounts of Chemical Research, 2019, 52, 1855-1864	24.3	42
97	Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles. <i>Langmuir</i> , 2004 , 20, 10268-72	4	41
96	A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. <i>Soft Matter</i> , 2012 , 8, 4165-4170	3.6	40
95	Investigation of Micellar Media Containing Ecyclodextrins by Means of Reaction Kinetics: Basic Hydrolysis of N-Methyl-N-nitroso-p-toluenesulfonamide. <i>Journal of Physical Chemistry B</i> , 1997 , 101, 738	3 ² 7 ⁴ 389	9 ⁴⁰
94	Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16452-16457	16.4	39
93	Plasmon Mapping in Au@Ag Nanocube Assemblies. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 15356-1	53,62	38
92	Pillar[5]arene-mediated synthesis of gold nanoparticles: size control and sensing capabilities. <i>Chemistry - A European Journal</i> , 2014 , 20, 8404-9	4.8	37
91	Effect of the cross-linking density on the thermoresponsive behavior of hollow PNIPAM microgels. <i>Langmuir</i> , 2015 , 31, 1142-9	4	36
90	Synthesis of thermosensitive microgels with a tunable magnetic core. <i>Langmuir</i> , 2011 , 27, 10484-91	4	35
89	Metallodielectric hollow shells: optical and catalytic properties. <i>Chemistry - an Asian Journal</i> , 2006 , 1, 730-6	4.5	35
88	Governing the morphology of Pt-Au heteronanocrystals with improved electrocatalytic performance. <i>Nanoscale</i> , 2015 , 7, 8739-47	7.7	34
87	Effects of gold nanoparticles on the stability of microbubbles. <i>Langmuir</i> , 2012 , 28, 13808-15	4	34
86	Growth and branching of gold nanoparticles through mesoporous silica thin films. <i>Nanoscale</i> , 2012 , 4, 931-9	7.7	33
85	Controllable nitric oxide release in the presence of gold nanoparticles. <i>Langmuir</i> , 2013 , 29, 8061-9	4	33
84	Effects of Alkylamines on the Percolation Phenomena in Water/AOT/Isooctane Microemulsions. Journal of Colloid and Interface Science, 2000 , 225, 259-264	9.3	31
83	Basic Hydrolysis of m-Nitrophenyl Acetate in Micellar Media Containing ECyclodextrins. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 4581-4587	3.4	31

82	SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. <i>ACS Sensors</i> , 2020 , 5, 693-702	9.2	30
81	Changes in the Fraction of Uncomplexed Cyclodextrin in Equilibrium with the Micellar System as a Result of Balance between Micellization and CyclodextrinBurfactant Complexation. Cationic Alkylammonium Surfactants. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 4912-4920	3.4	30
80	Basic Hydrolysis of Substituted Nitrophenyl Acetates in Ecyclodextrin/Surfactant Mixed Systems. Evidence of Free Cyclodextrin in Equilibrium with Micellized Surfactant. <i>Langmuir</i> , 1999 , 15, 8368-8375	4	30
79	Plasmonic/magnetic nanocomposites: Gold nanorods-functionalized silica coated magnetic nanoparticles. <i>Journal of Colloid and Interface Science</i> , 2017 , 502, 201-209	9.3	29
78	Flow dichroism as a reliable method to measure the hydrodynamic aspect ratio of gold nanoparticles. <i>ACS Nano</i> , 2011 , 5, 4935-44	16.7	29
77	Comparative study of nitroso group transfer in colloidal aggregates: micelles, vesicles and microemulsions. <i>New Journal of Chemistry</i> , 2003 , 27, 372-380	3.6	29
76	Nickel nanoparticle-doped paper as a bioactive scaffold for targeted and robust immobilization of functional proteins. <i>ACS Nano</i> , 2014 , 8, 6221-31	16.7	28
75	Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. <i>Nanomaterials</i> , 2017 , 7,	5.4	28
74	Chemical Sharpening of Gold Nanorods: The Rod-to-Octahedron Transition. <i>Angewandte Chemie</i> , 2007 , 119, 9141-9145	3.6	27
73	Hematite spindles with optical functionalities: growth of gold nanoshells and assembly of gold nanorods. <i>Journal of Colloid and Interface Science</i> , 2007 , 310, 297-301	9.3	27
72	Antibonding plasmon modes in colloidal gold nanorod clusters. <i>Langmuir</i> , 2012 , 28, 8826-33	4	26
71	Au@pNIPAM Colloids as Molecular Traps for Surface-Enhanced, Spectroscopic, Ultra-Sensitive Analysis. <i>Angewandte Chemie</i> , 2009 , 121, 144-149	3.6	26
70	Surface-enhanced Raman scattering (SERS) imaging of bioactive metabolites in mixed bacterial populations. <i>Applied Materials Today</i> , 2019 , 14, 207-215	6.6	26
69	Discrete metal nanoparticles with plasmonic chirality. <i>Chemical Society Reviews</i> , 2021 , 50, 3738-3754	58.5	26
68	Pseudophase Approach to Reactivity in Microemulsions: Quantitative Explanation of the Kinetics of the Nitroso Group Transfer Reactions between N-methyl-N-nitroso-p- toluenesulfonamide and Secondary Alkylamines in Water/AOT/Isooctane Microemulsions. <i>Industrial & Discourse Microemulsions</i> (Chemistry Research, 2003, 42, 5450-5456)	3.9	25
67	Aligning Au Nanorods by Using Carbon Nanotubes as Templates. <i>Angewandte Chemie</i> , 2005 , 117, 4449-	4 <u>4</u> .52	25
66	Pillar[5]arene-Based Supramolecular Plasmonic Thin Films for Label-Free, Quantitative and Multiplex SERS Detection. <i>ACS Applied Materials & Detection and Detection</i>	9.5	24
65	Hydrolysis of N-methyl-N-nitroso-p-toluenesulphonamide in micellar media. <i>Journal of Physical Organic Chemistry</i> , 1998 , 11, 584-588	2.1	24

(2020-2009)

64	Gemini-Surfactant-Directed Self-Assembly of Monodisperse Gold Nanorods into Standing Superlattices. <i>Angewandte Chemie</i> , 2009 , 121, 9648-9652	3.6	23	
63	Optically active poly(dimethylsiloxane) elastomer films through doping with gold nanoparticles. Journal of Nanoscience and Nanotechnology, 2006 , 6, 453-8	1.3	23	
62	Evidence for complexes of different stoichiometries between organic solvents and cyclodextrins. Organic and Biomolecular Chemistry, 2006 , 4, 1038-48	3.9	23	
61	Colloidal Metal-Halide Perovskite Nanoplatelets: Thickness-Controlled Synthesis, Properties and Application in Light-Emitting Diodes. <i>Advanced Materials</i> , 2021 , e2107105	24	23	
60	Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. <i>CrystEngComm</i> , 2016 , 18, 3422-3427	3.3	23	
59	Enhanced electrochemical sensing of polyphenols by an oxygen-mediated surface. <i>RSC Advances</i> , 2015 , 5, 5024-5031	3.7	22	
58	Synthesis of vinyl-terminated Au nanoprisms and nanooctahedra mediated by 3-butenoic acid: direct Au@pNIPAM fabrication with improved SERS capabilities. <i>Nanoscale</i> , 2016 , 8, 4557-64	7.7	22	
57	The Crystalline Structure of Gold Nanorods Revisited: Evidence for Higher-Index Lateral Facets. <i>Angewandte Chemie</i> , 2010 , 122, 9587-9590	3.6	22	
56	Kinetic Studies on the Acid and Alkaline Hydrolysis of N-Methyl-N-nitroso-p-toluenesulfonamide in Dioctadecyldimethylammonium Chloride Vesicles. <i>Langmuir</i> , 1997 , 13, 6633-6637	4	21	
55	Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of Quorum Sensing. <i>Frontiers in Cellular and Infection Microbiology</i> , 2018 , 8, 143	5.9	20	
54	Binary Self-Assembly of Gold Nanowires with Nanospheres and Nanorods. <i>Angewandte Chemie</i> , 2010 , 122, 10181-10185	3.6	20	
53	Synthesis and optical characterization of submicrometer gold nanotubes grown on goethite rods. <i>Langmuir</i> , 2008 , 24, 9675-81	4	20	
52	Effects of Temperature on the Conductivity of AOT/Isooctane/Water Microemulsions. Influence of Salts. <i>Journal of Chemical & Engineering Data</i> , 1999 , 44, 850-853	2.8	20	
51	Reactivity of benzoyl chlorides in nonionic microemulsions: potential application as indicators of system properties. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 22614-22	3.4	19	
50	In search of fully uncomplexed cyclodextrin in the presence of micellar aggregates. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 15831-8	3.4	19	
49	Ecyclodextrinthicelle mixed systems as a reaction Imedium. Denitrosation of N-methyl-N-nitroso-p-toluenesulfonamide. <i>Journal of Physical Organic Chemistry</i> , 2000 , 13, 664-669	2.1	19	
48	Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. <i>Nanoscale</i> , 2020 , 12, 23424-23443	7.7	18	
47	Programmable Modular Assembly of Functional Proteins on Raman-Encoded Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles as SERS Tags. <i>Chemistry of Materials</i> , 2020 , 32, 5739-5749	9.6	17	

46	Association Constant of Crystal Violet in Micellar Aggregates: Determination by Spectroscopic Techniques. <i>Journal of Chemical Research Synopses</i> , 1998 , 716-717		17
45	Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper. <i>Sensors and Actuators B: Chemical</i> , 2020 , 320, 128412	8.5	16
44	Laser heating tunability by off-resonant irradiation of gold nanoparticles. Small, 2014, 10, 376-84	11	16
43	Layer-by-layer assembled gold nanoparticles with a tunable payload of a nitric oxide photocage. Journal of Colloid and Interface Science, 2013 , 407, 524-8	9.3	16
42	Pseudophase Approach to the Transfer of the Nitroso Group in Water/AOT/SDS/Isooctane Quaternary Microemulsions. <i>Langmuir</i> , 2000 , 16, 9716-9721	4	15
41	Determination of the hydrolysis rate of AOT in AOTIBooctane Water microemulsions using sodium [hitroprusside as chemical probe. <i>Journal of Physical Organic Chemistry</i> , 2002 , 15, 576-581	2.1	13
40	Integrating Plasmonic Supercrystals in Microfluidics for Ultrasensitive, Label-Free, and Selective Surface-Enhanced Raman Spectroscopy Detection. <i>ACS Applied Materials & Description</i> , 12, 46	55 37 -46	55 15 4
39	Fully uncomplexed cyclodextrin in mixed systems of vesicle-cyclodextrin: solvolysis of benzoyl chlorides. <i>Journal of Physical Chemistry B</i> , 2009 , 113, 6749-55	3.4	12
38	Highly porous palladium nanodendrites: wet-chemical synthesis, electron tomography and catalytic activity. <i>Dalton Transactions</i> , 2019 , 48, 3758-3767	4.3	12
37	Screen-printed carbon electrodes doped with TiO2-Au nanocomposites with improved electrocatalytic performance. <i>Materials Today Communications</i> , 2017 , 11, 11-17	2.5	11
36	Effects of zwitterionic vesicles on the reactivity of benzoyl chlorides. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8524-30	3.4	11
35	Iron(II) as a Green Reducing Agent in Gold Nanoparticle Synthesis. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 8295-8302	8.3	10
34	Effects of Temperature on the Conductivity of Microemulsions: Influence of Sodium Hydroxide and Hydrochloric Acid. <i>Journal of Chemical & Engineering Data</i> , 1999 , 44, 846-849	2.8	10
33	Cyclodextrins and inorganic nanoparticles: Another tale of synergy. <i>Advances in Colloid and Interface Science</i> , 2021 , 288, 102338	14.3	9
32	Denitrosation of N-Nitrososulfonamide as Chemical Probe for Determination of Binding Constants to Cyclodextrins. <i>Supramolecular Chemistry</i> , 2005 , 17, 649-653	1.8	8
31	Cationic Mixed Micelles as Reaction Medium for Hydrolysis Reactions. <i>Journal of Solution Chemistry</i> , 2015 , 44, 1866-1874	1.8	7
30	Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. <i>Nanotechnology</i> , 2009 , 20, 095708	3.4	7
29	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions Containing Phase-Transfer Catalysts. <i>Journal of Chemical & Data</i> , 2000, 45, 428-432	2.8	7

28	From No-Confinement to 3D and 1D Quantum Confinement. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26677-26684	16.4	7
27	Plasmonic metal-organic frameworks. <i>SmartMat</i> ,	22.8	7
26	An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells. <i>ACS Nano</i> , 2020 , 14, 14655-14664	16.7	6
25	PdAu Heteropentamers: Selective Growth of Au on Pd Tetrahedral Nanoparticles with Enhanced Electrocatalytic Activity. <i>Crystal Growth and Design</i> , 2020 , 20, 5863-5867	3.5	5
24	Effect of Temperature on the Electrical Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions. Influence of Alkylamines. <i>Journal of Chemical & Engineering Data</i> , 1999 , 44, 1286-1290	2.8	5
23	The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature. <i>Nano Research</i> , 2020 , 13, 2351-2355	10	4
22	Pillar[5]arene-stabilized Plasmonic Nanoparticles as Selective SERS Sensors. <i>Israel Journal of Chemistry</i> , 2018 , 58, 1251-1260	3.4	4
21	Characterization of Alkane Diol-CD Complexes. Acid Denitrosation of N-Methyl-N-Nitroso-p-Toluenesulphonamide as a Chemical Probe. <i>Journal of Inclusion Phenomena and Macrocyclic Chemistry</i> , 2006 , 54, 209-216		4
20	Nitric oxide release from a cucurbituril encapsulated NO-donor. <i>Organic and Biomolecular Chemistry</i> , 2018 , 16, 4272-4278	3.9	3
19	Nonionic microemulsions: Effects of the interface on metalligand reactions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 309, 286-291	5.1	3
18	Micellbildung oder Bildung eines Cyclodextrin-Tensid-Komplexes. <i>Angewandte Chemie</i> , 2000 , 112, 3060	-3,662	3
17	Structure and Formation Kinetics of Millimeter-Size Single Domain Supercrystals. <i>Advanced Functional Materials</i> , 2021 , 31, 2101869	15.6	3
16	Spectrophotometric study of metalligand reactions in isooctane/Brij30/water nonionic microemulsions. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2007 , 295, 49-54	5.1	2
15	Multiple SERS Detection of Phenol Derivatives in Tap Water. <i>Proceedings (mdpi)</i> , 2021 , 70, 88	0.3	2
14	Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids. <i>Angewandte Chemie</i> , 2018 , 130, 16690-16695	3.6	2
13	Plasmonics of Gold Nanorods. Considerations for Biosensing. <i>NATO Science for Peace and Security Series B: Physics and Biophysics</i> , 2008 , 103-111	0.2	2
12	Plasmonic Au@Ag@mSiO Nanorattles for In Situ Imaging of Bacterial Metabolism by Surface-Enhanced Raman Scattering Spectroscopy <i>ACS Applied Materials & Discrete Materials & Di</i>	9.5	2
11	Overgrowth and Crystalline Structure of Gold Nanorods. <i>Microscopy and Microanalysis</i> , 2012 , 18, 67-68	0.5	1

Polyallylamine assisted synthesis of 3D branched AuNPs with plasmon tunability in the vis-NIR 10 Ο region as refractive index sensitivity probes.. Journal of Colloid and Interface Science, 2022, 611, 695-705 $^{9.3}$ Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems. 7.7 Nanoscale, 2021, 13, 18054-18069 Effect of Gold Nanoparticles on Transport Properties of the Protic Ionic Liquid Propylammonium 8 2.8 О Nitrate. Journal of Chemical & Engineering Data, 2021, 66, 3028-3037 Kinetic study of nitrosation of methylformamide. Journal of Physical Organic Chemistry, 2009, 22, 504-50 $\overline{1}$.1 Organization of Magnetic/Noble Metal Heterostructures by an Applied External Magnetic Field. 6 Materials Research Society Symposia Proceedings, 2008, 1079, 1 Preparation And Properties Of Flexible Nanocomposites, Obtained By A Combination Of Colloidal Chemistry And Sol-Gel Approach. NATO Science for Peace and Security Series B: Physics and 0.2 Biophysics, 2009, 245-250 Overgrowth of gold nanorods: From rods to octahedrons 2008, 259-260 TEM characterization of metallic Ni nanoshells grown on gold nanorods and on carbon nanotubes 2008, 153-154 Nanocolloids of Noble Metals 2016, 37-73 Bolaform Surfactant-Induced Au Nanoparticle Assemblies for Reliable Solution-Based 6.8 Surface-Enhanced Raman Scattering Detection. Advanced Materials Technologies, 2101726