List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604554/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
2	Gold nanorods: Synthesis, characterization and applications. Coordination Chemistry Reviews, 2005, 249, 1870-1901.	9.5	1,867
3	Shape control in gold nanoparticle synthesis. Chemical Society Reviews, 2008, 37, 1783.	18.7	1,749
4	Recent Progress on Silica Coating of Nanoparticles and Related Nanomaterials. Advanced Materials, 2010, 22, 1182-1195.	11.1	687
5	Electric-Field-Directed Growth of Gold Nanorods in Aqueous Surfactant Solutions. Advanced Functional Materials, 2004, 14, 571-579.	7.8	540
6	Silica-Coating and Hydrophobation of CTAB-Stabilized Gold Nanorods. Chemistry of Materials, 2006, 18, 2465-2467.	3.2	379
7	Synthesis and Optical Properties of Gold Nanodecahedra with Size Control. Advanced Materials, 2006, 18, 2529-2534.	11.1	365
8	A "Tips and Tricks―Practical Guide to the Synthesis of Gold Nanorods. Journal of Physical Chemistry Letters, 2015, 6, 4270-4279.	2.1	356
9	Seeded Growth of Submicron Au Colloids with Quadrupole Plasmon Resonance Modes. Langmuir, 2006, 22, 7007-7010.	1.6	349
10	Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles. ACS Nano, 2012, 6, 11059-11065.	7.3	338
11	Spatially-Directed Oxidation of Gold Nanoparticles by Au(III)â^'CTAB Complexes. Journal of Physical Chemistry B, 2005, 109, 14257-14261.	1.2	321
12	Size Tunable Au@Ag Core–Shell Nanoparticles: Synthesis and Surface-Enhanced Raman Scattering Properties. Langmuir, 2013, 29, 15076-15082.	1.6	303
13	Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study. Physical Chemistry Chemical Physics, 2006, 8, 3540.	1.3	293
14	Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nature Materials, 2016, 15, 1203-1211.	13.3	290
15	Au@pNIPAM Colloids as Molecular Traps for Surfaceâ€Enhanced, Spectroscopic, Ultraâ€Sensitive Analysis. Angewandte Chemie - International Edition, 2009, 48, 138-143.	7.2	286
16	Optical Control and Patterning of Gold-Nanorod-Poly(vinyl alcohol) Nanocomposite Films. Advanced Functional Materials, 2005, 15, 1065-1071.	7.8	254
17	Nanorod-Coated PNIPAM Microgels: Thermoresponsive Optical Properties. Small, 2007, 3, 1222-1229.	5.2	250
18	Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels. Advanced Materials, 2008, 20, 1666-1670.	11.1	247

#	Article	IF	CITATIONS
19	Aligning Au Nanorods by Using Carbon Nanotubes as Templates. Angewandte Chemie - International Edition, 2005, 44, 4375-4378.	7.2	231
20	Gemini‧urfactantâ€Directed Selfâ€Assembly of Monodisperse Gold Nanorods into Standing Superlattices. Angewandte Chemie - International Edition, 2009, 48, 9484-9488.	7.2	210
21	Optical sensing of biological, chemical and ionic species through aggregation of plasmonic nanoparticles. Journal of Materials Chemistry C, 2014, 2, 7460.	2.7	201
22	Highly Controlled Silica Coating of PEG-Capped Metal Nanoparticles and Preparation of SERS-Encoded Particles. Langmuir, 2009, 25, 13894-13899.	1.6	200
23	Plasmonic polymer nanocomposites. Nature Reviews Materials, 2018, 3, 375-391.	23.3	187
24	Size-Dependent Surface Plasmon Resonance Broadening in Nonspherical Nanoparticles: Single Gold Nanorods. Nano Letters, 2013, 13, 2234-2240.	4.5	175
25	Gold nanoparticle-loaded filter paper: a recyclable dip-catalyst for real-time reaction monitoring by surface enhanced Raman scattering. Chemical Communications, 2015, 51, 4572-4575.	2.2	170
26	Catalysis by Au@pNIPAM Nanocomposites: Effect of the Cross-Linking Density. Chemistry of Materials, 2010, 22, 3051-3059.	3.2	167
27	Drastic Surface Plasmon Mode Shifts in Gold Nanorods Due to Electron Charging. Plasmonics, 2006, 1, 61-66.	1.8	150
28	Au@pNIPAM Thermosensitive Nanostructures: Control over Shell Crossâ€linking, Overall Dimensions, and Core Growth. Advanced Functional Materials, 2009, 19, 3070-3076.	7.8	148
29	The Crystalline Structure of Gold Nanorods Revisited: Evidence for Higherâ€Index Lateral Facets. Angewandte Chemie - International Edition, 2010, 49, 9397-9400.	7.2	145
30	Encapsulation of Single Plasmonic Nanoparticles within ZIFâ€8 and SERS Analysis of the MOF Flexibility. Small, 2016, 12, 3935-3943.	5.2	142
31	Au@Ag Nanoparticles: Halides Stabilize {100} Facets. Journal of Physical Chemistry Letters, 2013, 4, 2209-2216.	2.1	138
32	Seeded Growth Synthesis of Gold Nanotriangles: Size Control, SAXS Analysis, and SERS Performance. ACS Applied Materials & Interfaces, 2018, 10, 11152-11163.	4.0	133
33	Modulation of Localized Surface Plasmons and SERS Response in Gold Dumbbells through Silver Coating. Journal of Physical Chemistry C, 2010, 114, 10417-10423.	1.5	128
34	Chemical Sharpening of Gold Nanorods: The Rodâ€ŧoâ€Octahedron Transition. Angewandte Chemie - International Edition, 2007, 46, 8983-8987.	7.2	127
35	Influence of Iodide Ions on the Growth of Gold Nanorods: Tuning Tip Curvature and Surface Plasmon Resonance. Advanced Functional Materials, 2008, 18, 3780-3786.	7.8	124
36	The effect of surface roughness on the plasmonic response of individual sub-micron gold spheres. Physical Chemistry Chemical Physics, 2009, 11, 5909.	1.3	124

#	Article	lF	CITATIONS
37	Colloidal Metalâ€Halide Perovskite Nanoplatelets: Thicknessâ€Controlled Synthesis, Properties, and Application in Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2107105.	11.1	124
38	Metal Nanoparticles and Supramolecular Macrocycles: A Tale of Synergy. Chemistry - A European Journal, 2014, 20, 10874-10883.	1.7	123
39	Optical Properties of Platinum-Coated Gold Nanorods. Journal of Physical Chemistry C, 2007, 111, 6183-6188.	1.5	121
40	Influence of silver ions on the growth mode of platinum on gold nanorods. Journal of Materials Chemistry, 2006, 16, 3946-3951.	6.7	120
41	Plasmon Coupling in Layer-by-Layer Assembled Gold Nanorod Films. Langmuir, 2007, 23, 4606-4611.	1.6	119
42	Binary Selfâ€Assembly of Gold Nanowires with Nanospheres and Nanorods. Angewandte Chemie - International Edition, 2010, 49, 9985-9989.	7.2	118
43	Modeling the Optical Response of Highly Faceted Metal Nanoparticles with a Fully 3D Boundary Element Method. Advanced Materials, 2008, 20, 4288-4293.	11.1	116
44	Shape control in ZIF-8 nanocrystals and metal nanoparticles@ZIF-8 heterostructures. Nanoscale, 2017, 9, 16645-16651.	2.8	116
45	Optical properties of metal nanoparticle coated silica spheres: a simple effective medium approach. Physical Chemistry Chemical Physics, 2004, 6, 5056-5060.	1.3	114
46	Multiresponsive Hybrid Colloids Based on Gold Nanorods and Poly(NIPAM-co-allylacetic acid) Microgels: Temperature- and pH-Tunable Plasmon Resonance. Langmuir, 2009, 25, 3163-3167.	1.6	114
47	Nanocrystal engineering of noble metals and metal chalcogenides: controlling the morphology, composition and crystallinity. CrystEngComm, 2015, 17, 3727-3762.	1.3	113
48	Protein/Polymerâ€Based Dualâ€Responsive Gold Nanoparticles with pHâ€Dependent Thermal Sensitivity. Advanced Functional Materials, 2012, 22, 1436-1444.	7.8	111
49	Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today, 2010, 5, 21-27.	6.2	109
50	Highly Transparent and Conductive Films of Densely Aligned Ultrathin Au Nanowire Monolayers. Nano Letters, 2012, 12, 6066-6070.	4.5	109
51	Reshaping and LSPR tuning of Au nanostars in the presence of CTAB. Journal of Materials Chemistry, 2011, 21, 11544.	6.7	108
52	Crystal structure dependence of the elastic constants of gold nanorods. Journal of Materials Chemistry, 2006, 16, 3957.	6.7	105
53	Gold Nanorod–pNIPAM Hybrids with Reversible Plasmon Coupling: Synthesis, Modeling, and SERS Properties. ACS Applied Materials & Interfaces, 2015, 7, 12530-12538.	4.0	105
54	Selfâ€Assembly of Au@Ag Nanorods Mediated by Gemini Surfactants for Highly Efficient SERSâ€Active Supercrystals. Advanced Optical Materials, 2013, 1, 477-481.	3.6	101

#	Article	IF	CITATIONS
55	Colloidal Gold-Catalyzed Reduction of Ferrocyanate (III) by Borohydride Ions: A Model System for Redox Catalysis. Langmuir, 2010, 26, 1271-1277.	1.6	99
56	Discrete metal nanoparticles with plasmonic chirality. Chemical Society Reviews, 2021, 50, 3738-3754.	18.7	99
57	The Effect of Silica Coating on the Optical Response of Sub-micrometer Gold Spheres. Journal of Physical Chemistry C, 2007, 111, 13361-13366.	1.5	96
58	Heating rate influence on the synthesis of iron oxide nanoparticles: the case of decanoic acid. Chemical Communications, 2010, 46, 6108.	2.2	96
59	Multifunctional Microgel Magnetic/Optical Traps for SERS Ultradetection. Langmuir, 2011, 27, 4520-4525.	1.6	96
60	Steric Hindrance Induces crosslike Self-Assembly of Gold Nanodumbbells. Nano Letters, 2012, 12, 4380-4384.	4.5	91
61	Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. Nanoscale, 2017, 9, 2051-2058.	2.8	91
62	Optical gas sensing of TiO2 and TiO2/Au nanocomposite thin films. Sensors and Actuators B: Chemical, 2008, 132, 107-115.	4.0	89
63	Gold nanoparticles for regulation of cell function and behavior. Nano Today, 2017, 13, 40-60.	6.2	86
64	Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids. Angewandte Chemie - International Edition, 2018, 57, 16452-16457.	7.2	86
65	Gold Nanooctahedra with Tunable Size and Microfluidic-Induced 3D Assembly for Highly Uniform SERS-Active Supercrystals. Chemistry of Materials, 2015, 27, 8310-8317.	3.2	85
66	Plasmonic Au@Pd Nanorods with Boosted Refractive Index Susceptibility and SERS Efficiency: A Multifunctional Platform for Hydrogen Sensing and Monitoring of Catalytic Reactions. Chemistry of Materials, 2016, 28, 9169-9180.	3.2	85
67	Rapid Epitaxial Growth of Ag on Au Nanoparticles: From Au Nanorods to Core–Shell Au@Ag Octahedrons. Chemistry - A European Journal, 2010, 16, 5558-5563.	1.7	83
68	Galvanic Replacement Coupled to Seeded Growth as a Route for Shape-Controlled Synthesis of Plasmonic Nanorattles. Journal of the American Chemical Society, 2016, 138, 11453-11456.	6.6	83
69	Silica gels with tailored, gold nanorod-driven optical functionalities. Applied Surface Science, 2004, 226, 137-143.	3.1	82
70	Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surfaceâ€Enhanced Raman Scattering Detection. Chemistry - A European Journal, 2010, 16, 9462-9467.	1.7	82
71	Palladium Nanoparticle-Loaded Cellulose Paper: A Highly Efficient, Robust, and Recyclable Self-Assembled Composite Catalytic System. Journal of Physical Chemistry Letters, 2015, 6, 230-238.	2.1	82
72	Evidence for Hydrogen-Bonding-Directed Assembly of Gold Nanorods in Aqueous Solution. Journal of Physical Chemistry Letters, 2010, 1, 1181-1185.	2.1	81

#	Article	IF	CITATIONS
73	Ordered Arrays of Gold Nanostructures from Interfacially Assembled Au@PNIPAM Hybrid Nanoparticles. Langmuir, 2012, 28, 8985-8993.	1.6	81
74	Quasiâ€Epitaxial Growth of Ni Nanoshells on Au Nanorods. Advanced Materials, 2007, 19, 2262-2266.	11.1	78
75	Reversible assembly of metal nanoparticles induced by penicillamine. Dynamic formation of SERS hot spots. Journal of Materials Chemistry, 2011, 21, 16880.	6.7	77
76	Synthesis of Multifunctional Composite Microgels <i>via In Situ</i> Ni Growth on pNIPAM-Coated Au Nanoparticles. ACS Nano, 2009, 3, 3184-3190.	7.3	76
77	Growth of Sharp Tips on Gold Nanowires Leads to Increased Surface-Enhanced Raman Scattering Activity. Journal of Physical Chemistry Letters, 2010, 1, 24-27.	2.1	74
78	Determination of the Elastic Constants of Gold Nanorods Produced by Seed Mediated Growth. Nano Letters, 2004, 4, 2493-2497.	4.5	72
79	Au@pNIPAM SERRS Tags for Multiplex Immunophenotyping Cellular Receptors and Imaging Tumor Cells. Small, 2015, 11, 4149-4157.	5.2	72
80	Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra. Journal of Physical Chemistry C, 2009, 113, 18623-18631.	1.5	71
81	Supported Pd Nanoparticles for Carbon–Carbon Coupling Reactions. Topics in Catalysis, 2013, 56, 1154-1170.	1.3	69
82	Plasmonic Supercrystals. Accounts of Chemical Research, 2019, 52, 1855-1864.	7.6	68
83	Imaging Bacterial Interspecies Chemical Interactions by Surface-Enhanced Raman Scattering. ACS Nano, 2017, 11, 4631-4640.	7.3	66
84	Magneticâ^'Noble Metal Nanocomposites with Morphology-Dependent Optical Response. Chemistry of Materials, 2007, 19, 4415-4422.	3.2	65
85	Multifunctionality in metal@microgel colloidal nanocomposites. Journal of Materials Chemistry A, 2013, 1, 20-26.	5.2	65
86	SERS-Based Molecularly Imprinted Plasmonic Sensor for Highly Sensitive PAH Detection. ACS Sensors, 2020, 5, 693-702.	4.0	65
87	Oleic acid/oleylamine ligand pair: a versatile combination in the synthesis of colloidal nanoparticles. Nanoscale Horizons, 2022, 7, 941-1015.	4.1	61
88	Micellization versus Cyclodextrin–Surfactant Complexation. Angewandte Chemie - International Edition, 2000, 39, 2945-2948.	7.2	59
89	Growth of pentatwinned gold nanorods into truncated decahedra. Nanoscale, 2010, 2, 2377.	2.8	56
90	Pd nanoparticles as a plasmonic material: synthesis, optical properties and applications. Nanoscale, 2020, 12, 23424-23443.	2.8	55

#	Article	IF	CITATIONS
91	Pt-Catalyzed Growth of Ni Nanoparticles in Aqueous CTAB Solution. Chemistry of Materials, 2008, 20, 5399-5405.	3.2	52
92	Dimethylformamide-mediated synthesis of water-soluble platinum nanodendrites for ethanol oxidation electrocatalysis. Nanoscale, 2013, 5, 4776.	2.8	51
93	Acoustic Vibrations in Bimetallic Au@Pd Core–Shell Nanorods. Journal of Physical Chemistry Letters, 2012, 3, 613-619.	2.1	50
94	Using Surface Enhanced Raman Scattering to Analyze the Interactions of Protein Receptors with Bacterial Quorum Sensing Modulators. ACS Nano, 2015, 9, 5567-5576.	7.3	50
95	Plasmonic metalâ€organic frameworks. SmartMat, 2021, 2, 446-465.	6.4	49
96	Dimensionality Control of Inorganic and Hybrid Perovskite Nanocrystals by Reaction Temperature: From No onfinement to 3D and 1D Quantum Confinement. Angewandte Chemie - International Edition, 2021, 60, 26677-26684.	7.2	49
97	Vesicles Accelerate Proton Transfer from Carbon up to 850-fold. Organic Letters, 2000, 2, 127-130.	2.4	48
98	Basic Hydrolysis of Crystal Violet in β-Cyclodextrin/Surfactant Mixed Systems. Langmuir, 2004, 20, 606-613.	1.6	48
99	Redshift of surface plasmon modes of small gold rods due to their atomic roughness and end-cap geometry. Physical Review B, 2008, 77, .	1.1	47
100	Seedless Synthesis of Single Crystalline Au Nanoparticles with Unusual Shapes and Tunable LSPR in the near-IR. Chemistry of Materials, 2012, 24, 1393-1399.	3.2	47
101	Pillar[5]areneâ€Mediated Synthesis of Gold Nanoparticles: Size Control and Sensing Capabilities. Chemistry - A European Journal, 2014, 20, 8404-8409.	1.7	46
102	Effect of the Cross-Linking Density on the Thermoresponsive Behavior of Hollow PNIPAM Microgels. Langmuir, 2015, 31, 1142-1149.	1.6	46
103	A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter, 2012, 8, 4165-4170.	1.2	45
104	Plasmon Mapping in Au@Ag Nanocube Assemblies. Journal of Physical Chemistry C, 2014, 118, 15356-15362.	1.5	45
105	Investigation of Micellar Media Containing β-Cyclodextrins by Means of Reaction Kinetics: Basic Hydrolysis ofN-Methyl-N-nitroso-p-toluenesulfonamide. Journal of Physical Chemistry B, 1997, 101, 7383-7389.	1.2	43
106	Flexible Ureasil Hybrids with Tailored Optical Properties through Doping with Metal Nanoparticles. Langmuir, 2004, 20, 10268-10272.	1.6	42
107	Effects of Gold Nanoparticles on the Stability of Microbubbles. Langmuir, 2012, 28, 13808-13815.	1.6	42
108	Governing the morphology of Pt–Au heteronanocrystals with improved electrocatalytic performance. Nanoscale, 2015, 7, 8739-8747.	2.8	42

7

JORGE PEREZ-JUSTE

#	Article	IF	CITATIONS
109	Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties. Nanomaterials, 2017, 7, 139.	1.9	42
110	Controllable Nitric Oxide Release in the Presence of Gold Nanoparticles. Langmuir, 2013, 29, 8061-8069.	1.6	39
111	Synthesis of Thermosensitive Microgels with a Tunable Magnetic Core. Langmuir, 2011, 27, 10484-10491.	1.6	38
112	Nickel Nanoparticle-Doped Paper as a Bioactive Scaffold for Targeted and Robust Immobilization of Functional Proteins. ACS Nano, 2014, 8, 6221-6231.	7.3	38
113	Metallodielectric Hollow Shells: Optical and Catalytic Properties. Chemistry - an Asian Journal, 2006, 1, 730-736.	1.7	37
114	Growth and branching of gold nanoparticles through mesoporous silica thin films. Nanoscale, 2012, 4, 931-939.	2.8	37
115	Effects of Alkylamines on the Percolation Phenomena in Water/AOT/Isooctane Microemulsions. Journal of Colloid and Interface Science, 2000, 225, 259-264.	5.0	36
116	Surface-enhanced Raman scattering (SERS) imaging of bioactive metabolites in mixed bacterial populations. Applied Materials Today, 2019, 14, 207-215.	2.3	36
117	Plasmonic/magnetic nanocomposites: Gold nanorods-functionalized silica coated magnetic nanoparticles. Journal of Colloid and Interface Science, 2017, 502, 201-209.	5.0	35
118	Flow Dichroism as a Reliable Method to Measure the Hydrodynamic Aspect Ratio of Gold Nanoparticles. ACS Nano, 2011, 5, 4935-4944.	7.3	33
119	Ultrasensitive inkjet-printed based SERS sensor combining a high-performance gold nanosphere ink and hydrophobic paper. Sensors and Actuators B: Chemical, 2020, 320, 128412.	4.0	33
120	Basic Hydrolysis of m-Nitrophenyl Acetate in Micellar Media Containing β-Cyclodextrins. Journal of Physical Chemistry B, 1998, 102, 4581-4587.	1.2	32
121	Basic Hydrolysis of Substituted Nitrophenyl Acetates in β-Cyclodextrin/Surfactant Mixed Systems. Evidence of Free Cyclodextrin in Equilibrium with Micellized Surfactant. Langmuir, 1999, 15, 8368-8375.	1.6	32
122	Comparative study of nitroso group transfer in colloidal aggregates: micelles, vesicles and microemulsions. New Journal of Chemistry, 2003, 27, 372-380.	1.4	32
123	Programmable Modular Assembly of Functional Proteins on Raman-Encoded Zeolitic Imidazolate Framework-8 (ZIF-8) Nanoparticles as SERS Tags. Chemistry of Materials, 2020, 32, 5739-5749.	3.2	32
124	Changes in the Fraction of Uncomplexed Cyclodextrin in Equilibrium with the Micellar System as a Result of Balance between Micellization and Cyclodextrinâ´'Surfactant Complexation. Cationic Alkylammonium Surfactants. Journal of Physical Chemistry B, 2001, 105, 4912-4920.	1.2	31
125	Hydrophilic Pt nanoflowers: synthesis, crystallographic analysis and catalytic performance. CrystEngComm, 2016, 18, 3422-3427.	1.3	31
126	Pillar[5]arene-Based Supramolecular Plasmonic Thin Films for Label-Free, Quantitative and Multiplex SERS Detection. ACS Applied Materials & Interfaces, 2017, 9, 26372-26382.	4.0	31

#	Article	IF	CITATIONS
127	Hematite spindles with optical functionalities: Growth of gold nanoshells and assembly of gold nanorods. Journal of Colloid and Interface Science, 2007, 310, 297-301.	5.0	30
128	Pseudophase Approach to Reactivity in Microemulsions:Â Quantitative Explanation of the Kinetics of the Nitroso Group Transfer Reactions betweenN-methyl-N-nitroso-p- toluenesulfonamide and Secondary Alkylamines in Water/AOT/Isooctane Microemulsions. Industrial & Engineering Chemistry Research, 2003, 42, 5450-5456.	1.8	29
129	Surface-Enhanced Raman Scattering Spectroscopy for Label-Free Analysis of P. aeruginosa Quorum Sensing. Frontiers in Cellular and Infection Microbiology, 2018, 8, 143.	1.8	29
130	Enhanced electrochemical sensing of polyphenols by an oxygen-mediated surface. RSC Advances, 2015, 5, 5024-5031.	1.7	28
131	Hydrolysis ofN-methyl-N-nitroso-p-toluenesulphonamide in micellar media. Journal of Physical Organic Chemistry, 1998, 11, 584-588.	0.9	27
132	Antibonding Plasmon Modes in Colloidal Gold Nanorod Clusters. Langmuir, 2012, 28, 8826-8833.	1.6	27
133	Integrating Plasmonic Supercrystals in Microfluidics for Ultrasensitive, Label-Free, and Selective Surface-Enhanced Raman Spectroscopy Detection. ACS Applied Materials & Interfaces, 2020, 12, 46557-46564.	4.0	27
134	Kinetic Studies on the Acid and Alkaline Hydrolysis of N-Methyl-N-nitroso-p-toluenesulfonamide in Dioctadecyldimethylammonium Chloride Vesicles. Langmuir, 1997, 13, 6633-6637.	1.6	26
135	Effects of Temperature on the Conductivity of AOT/Isooctane/Water Microemulsions. Influence of Salts. Journal of Chemical & Engineering Data, 1999, 44, 850-853.	1.0	25
136	Optically Active Poly(dimethylsiloxane) Elastomer Films Through Doping with Gold Nanoparticles. Journal of Nanoscience and Nanotechnology, 2006, 6, 453-458.	0.9	25
137	Synthesis of vinyl-terminated Au nanoprisms and nanooctahedra mediated by 3-butenoic acid: direct Au@pNIPAM fabrication with improved SERS capabilities. Nanoscale, 2016, 8, 4557-4564.	2.8	25
138	Highly porous palladium nanodendrites: wet-chemical synthesis, electron tomography and catalytic activity. Dalton Transactions, 2019, 48, 3758-3767.	1.6	25
139	Evidence for complexes of different stoichiometries between organic solvents and cyclodextrins. Organic and Biomolecular Chemistry, 2006, 4, 1038.	1.5	24
140	Synthesis and Optical Characterization of Submicrometer Gold Nanotubes Grown on Goethite Rods. Langmuir, 2008, 24, 9675-9681.	1.6	23
141	Cyclodextrins and inorganic nanoparticles: Another tale of synergy. Advances in Colloid and Interface Science, 2021, 288, 102338.	7.0	22
142	Laser Heating Tunability by Offâ€Resonant Irradiation of Gold Nanoparticles. Small, 2014, 10, 376-384.	5.2	21
143	?-Cyclodextrin-micelle mixed systems as a reaction �medium. Denitrosation ofN-methyl-N-nitroso-p-toluenesulfonamide. Journal of Physical Organic Chemistry, 2000, 13, 664-669.	0.9	20
144	In Search of Fully Uncomplexed Cyclodextrin in the Presence of Micellar Aggregates. Journal of Physical Chemistry B, 2006, 110, 15831-15838.	1.2	20

#	Article	IF	CITATIONS
145	An Expanded Surface-Enhanced Raman Scattering Tags Library by Combinatorial Encapsulation of Reporter Molecules in Metal Nanoshells. ACS Nano, 2020, 14, 14655-14664.	7.3	20
146	Reactivity of Benzoyl Chlorides in Nonionic Microemulsions:Â Potential Application as Indicators of System Properties. Journal of Physical Chemistry B, 2005, 109, 22614-22622.	1.2	19
147	Pseudophase Approach to the Transfer of the Nitroso Group in Water/AOT/SDS/Isooctane Quaternary Microemulsions. Langmuir, 2000, 16, 9716-9721.	1.6	18
148	Iron(II) as a Green Reducing Agent in Gold Nanoparticle Synthesis. ACS Sustainable Chemistry and Engineering, 2019, 7, 8295-8302.	3.2	18
149	Association Constant of Crystal Violet in Micellar Aggregates: Determination by Spectroscopic Techniques. Journal of Chemical Research Synopses, 1998, , 716-717.	0.3	17
150	Layer-by-layer assembled gold nanoparticles with a tunable payload of a nitric oxide photocage. Journal of Colloid and Interface Science, 2013, 407, 524-528.	5.0	16
151	Determination of the hydrolysis rate of AOT in AOT-isooctane-water microemulsions using sodiumÂnitroprusside as chemical probe. Journal of Physical Organic Chemistry, 2002, 15, 576-581.	0.9	14
152	Screen-printed carbon electrodes doped with TiO2-Au nanocomposites with improved electrocatalytic performance. Materials Today Communications, 2017, 11, 11-17.	0.9	14
153	Effects of Temperature on the Conductivity of Microemulsions:Â Influence of Sodium Hydroxide and Hydrochloric Acid. Journal of Chemical & Engineering Data, 1999, 44, 846-849.	1.0	12
154	Fully Uncomplexed Cyclodextrin in Mixed Systems of Vesicleâ^Cyclodextrin: Solvolysis of Benzoyl Chlorides. Journal of Physical Chemistry B, 2009, 113, 6749-6755.	1.2	12
155	The versatility of Fe(II) in the synthesis of uniform citrate-stabilized plasmonic nanoparticles with tunable size at room temperature. Nano Research, 2020, 13, 2351-2355.	5.8	12
156	Effects of Zwitterionic Vesicles on the Reactivity of Benzoyl Chlorides. Journal of Physical Chemistry B, 2006, 110, 8524-8530.	1.2	11
157	Cationic Mixed Micelles as Reaction Medium for Hydrolysis Reactions. Journal of Solution Chemistry, 2015, 44, 1866-1874.	0.6	11
158	Pd–Au Heteropentamers: Selective Growth of Au on Pd Tetrahedral Nanoparticles with Enhanced Electrocatalytic Activity. Crystal Growth and Design, 2020, 20, 5863-5867.	1.4	10
159	Structure and Formation Kinetics of Millimeter‣ize Single Domain Supercrystals. Advanced Functional Materials, 2021, 31, 2101869.	7.8	9
160	Denitrosation of N-Nitrososulfonamide as Chemical Probe for Determination of Binding Constants to Cyclodextrins. Supramolecular Chemistry, 2005, 17, 649-653.	1.5	8
161	Effect of Temperature on the Electrical Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate + 2,2,4-Trimethylpentane + Water Microemulsions. Influence of Alkylamines. Journal of Chemical & Engineering Data, 1999, 44, 1286-1290.	1.0	7
162	Conductivity of Sodium Bis(2-ethylhexyl)sulfosuccinate/Isooctane/Water Microemulsions Containing Phase-Transfer Catalysts. Journal of Chemical & Engineering Data, 2000, 45, 428-432.	1.0	7

#	Article	IF	CITATIONS
163	Field gradient imaging of nanoparticle systems: analysis of geometry and surface coating effects. Nanotechnology, 2009, 20, 095708.	1.3	7
164	Tuning the Morphology and Chiroptical Properties of Discrete Gold Nanorods with Amino Acids. Angewandte Chemie, 2018, 130, 16690-16695.	1.6	7
165	Plasmonic Au@Ag@mSiO ₂ Nanorattles for In Situ Imaging of Bacterial Metabolism by Surface-Enhanced Raman Scattering Spectroscopy. ACS Applied Materials & Interfaces, 2021, 13, 61587-61597.	4.0	7
166	Pillar[5]areneâ€stabilized Plasmonic Nanoparticles as Selective SERS Sensors. Israel Journal of Chemistry, 2018, 58, 1251-1260.	1.0	6
167	Prospects and applications of synergistic noble metal nanoparticle-bacterial hybrid systems. Nanoscale, 2021, 13, 18054-18069.	2.8	6
168	Nonionic microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 309, 286-291.	2.3	5
169	Characterization of Alkane Diol-CD Complexes. Acid Denitrosation of N-Methyl-N-Nitroso-p-Toluenesulphonamide as a Chemical Probe. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2006, 54, 209-216.	1.6	4
170	Nitric oxide release from a cucurbituril encapsulated NO-donor. Organic and Biomolecular Chemistry, 2018, 16, 4272-4278.	1.5	4
171	Spectrophotometric study of metal–ligand reactions in isooctane/Brij30/water nonionic microemulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 295, 49-54.	2.3	3
172	Effect of Gold Nanoparticles on Transport Properties of the Protic Ionic Liquid Propylammonium Nitrate. Journal of Chemical & Engineering Data, 2021, 66, 3028-3037.	1.0	3
173	Plasmonics of Gold Nanorods. Considerations for Biosensing. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 103-111.	0.2	3
174	Polyallylamine assisted synthesis of 3D branched AuNPs with plasmon tunability in the vis-NIR region as refractive index sensitivity probes. Journal of Colloid and Interface Science, 2022, 611, 695-705.	5.0	3
175	Multiple SERS Detection of Phenol Derivatives in Tap Water. Proceedings (mdpi), 2020, 70, .	0.2	2
176	Polydimethylsiloxane Sponge-Supported Metal Nanoparticles as Reusable Catalyst for Continuous Flow Reactions. Nanomaterials, 2022, 12, 2081.	1.9	2
177	Overgrowth and Crystalline Structure of Gold Nanorods. Microscopy and Microanalysis, 2012, 18, 67-68.	0.2	1
178	Bolaform Surfactantâ€Induced Au Nanoparticle Assemblies for Reliable Solutionâ€Based Surfaceâ€Enhanced Raman Scattering Detection. Advanced Materials Technologies, 2022, 7, .	3.0	1
179	Methodological Approaches for Monitoring Five Major Food Safety Hazards Affecting Food Production in the Galicia–Northern Portugal Euroregion. Foods, 2022, 11, 84.	1.9	1
180	Organization of Magnetic/Noble Metal Heterostructures by an Applied External Magnetic Field. Materials Research Society Symposia Proceedings, 2008, 1079, 1.	0.1	0

#	Article	IF	CITATIONS
181	Kinetic study of nitrosation of methylformamide. Journal of Physical Organic Chemistry, 2009, 22, 504-507.	0.9	0
182	Nanocolloids of Noble Metals. , 2016, , 37-73.		0
183	Preparation And Properties Of Flexible Nanocomposites, Obtained By A Combination Of Colloidal Chemistry And Sol-Gel Approach. NATO Science for Peace and Security Series B: Physics and Biophysics, 2009, , 245-250.	0.2	0
184	TEM characterization of metallic Ni nanoshells grown on gold nanorods and on carbon nanotubes. , 2008, , 153-154.		0
185	Outside Front Cover: Volume 2 Issue 4. SmartMat, 2021, 2, .	6.4	0