
## Enrico Benassi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604548/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                     | IF               | CITATIONS   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------|
| 1  | Fluorescent mesoionic 1-(2-aryl-4H-thieno[3,4-d][1,2,3]triazol-2-ium-4-ylidene)ethan-1-olates: One-pot<br>synthesis, photophysics, and biological behavior. Dyes and Pigments, 2022, 199, 109777.                                                           | 3.7              | 2           |
| 2  | An inexpensive density functional theory â€based protocol to predict accurate 19 Fâ€NMR chemical shifts.<br>Journal of Computational Chemistry, 2022, 43, 170-183.                                                                                          | 3.3              | 5           |
| 3  | How do electron donating substituents affect the electronic structure, molecular topology,<br>vibrational properties and intra- and intermolecular interactions of polyhalogenated pyridines?.<br>Physical Chemistry Chemical Physics, 2022, 24, 4002-4021. | 2.8              | 4           |
| 4  | N,O-bidentate ligands-based salicylic spiroborates: A bright frontier of bioimaging. Dyes and Pigments, 2022, 200, 110165.                                                                                                                                  | 3.7              | 6           |
| 5  | Intermolecular interactions in the crystalline structure of some polyhalogenated Di– And triamino<br>Pyridines: Spectroscopical perspectives. Spectrochimica Acta - Part A: Molecular and Biomolecular<br>Spectroscopy, 2022, 281, 121632.                  | 3.9              | 0           |
| 6  | 3-Aryl-2-(thiazol-2-yl)acrylonitriles assembled with aryl/hetaryl rings: Design of the optical properties and application prospects. Dyes and Pigments, 2021, 184, 108836.                                                                                  | 3.7              | 7           |
| 7  | Fluorescent Assembles of 2â€Aminoâ€3â€cyanothiophenes with Azoles. Design and Peculiar Properties of<br>Absorption and Emission. Asian Journal of Organic Chemistry, 2021, 10, 400-411.                                                                     | 2.7              | 1           |
| 8  | Generation of particle assemblies mimicking enzymatic activity by processing of herbal food: the case of rhizoma polygonati and other natural ingredients in traditional Chinese medicine. Nanoscale Advances, 2021, 3, 2222-2235.                          | 4.6              | 33          |
| 9  | Thermodynamic properties, mechanical properties and interatomic potential in solids: a Shou-Shi-Ling () Tj ETQq1                                                                                                                                            | 1_0_78432        | 14 rgBT /Ov |
| 10 | Design, synthesis, and photophysics of bi- and tricyclic fused pyrazolines. New Journal of Chemistry, 2021, 45, 6315-6326.                                                                                                                                  | 2.8              | 1           |
| 11 | Selective oxidative intermolecular carbosulphenylation of aryl alkenes with thiols and nucleophiles via a 1,2-dithioethane intermediate. Chemical Communications, 2021, 57, 7533-7536.                                                                      | 4.1              | 3           |
| 12 | A General Method for the Dibromination of Vicinal sp <sup>3</sup> C–H Bonds Exploiting Weak<br>Solvent–Substrate Noncovalent Interactions. Organic Letters, 2021, 23, 2399-2404.                                                                            | 4.6              | 3           |
| 13 | Concealed Wireless Warning Sensor Based on Triboelectrification and Human-Plant Interactive<br>Induction. Research, 2021, 2021, 9870936.                                                                                                                    | 5.7              | 15          |
| 14 | p-Block Heterobenzenes: Recurring Features in Structural, Vibrational, Electronic and Topological<br>Properties. Journal of Molecular Structure, 2021, 1245, 131258.                                                                                        | 3.6              | 1           |
| 15 | Impact of fluorination and chlorination on the electronic structure, topology and in-plane ring normal modes of pyridines. Physical Chemistry Chemical Physics, 2021, 23, 18958-18974.                                                                      | 2.8              | 5           |
| 16 | Modified biomimetic core–shell nanostructures enable long circulation and targeted delivery for cancer therapy. New Journal of Chemistry, 2021, 45, 21359-21368.                                                                                            | 2.8              | 2           |
| 17 | Photophysics, photochemistry and bioimaging application of 8-azapurine derivatives. Organic and<br>Biomolecular Chemistry, 2021, 19, 9880-9896.                                                                                                             | 2.8              | 2           |
| 18 | 2â€Arylâ€2,4â€dihydroâ€5 <i>H</i> â€{1,2,3]triazolo[4,5â€ <i>d</i> ]pyrimidinâ€5â€ones as a New Platform for th<br>and Synthesis of Biosensors and Chemosensors. European Journal of Organic Chemistry, 2020, 2020,                                         | ne Design<br>2.4 | 7           |

316-329.

ENRICO BENASSI

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Structural Diversity and Spectral Properties of the Crystals of Heterometallic Complexes Derived from TM(acacen) and Pb(diketonate) <sub>2</sub> , TM = Cu, Ni, Pd. Crystal Growth and Design, 2020, 20, 7260-7270.                                                         | 3.0 | 2         |
| 20 | Two Approaches for the Synthesis of Fused Dihydropyridines via a 1,6-Electrocyclic Reaction:<br>Fluorescent Properties and Prospects for Application. Journal of Organic Chemistry, 2020, 85,<br>13837-13852.                                                               | 3.2 | 3         |
| 21 | Arene–Ruthenium(II) Complexes Containing 11 <i>H</i> -Indeno[1,2- <i>b</i> ]quinoxalin-11-one Derivatives<br>and Tryptanthrin-6-oxime: Synthesis, Characterization, Cytotoxicity, and Catalytic Transfer<br>Hydrogenation of Aryl Ketones. ACS Omega, 2020, 5, 11167-11179. | 3.5 | 20        |
| 22 | Iodine/Manganese Catalyzed Sulfenylation of Indole via Dehydrogenative Oxidative Coupling in Anisole. Advanced Synthesis and Catalysis, 2020, 362, 2666-2671.                                                                                                               | 4.3 | 17        |
| 23 | Impact of molecular packing rearrangement on solid-state fluorescence: polyhalogenated<br><i>N</i> -hetarylamines <i>vs.</i> their co-crystals with 18-crown-6. CrystEngComm, 2019, 21, 5931-5946.                                                                          | 2.6 | 12        |
| 24 | The impact on the ring related vibrational frequencies of pyridine of hydrogen bonds with haloforms<br>– a topology perspective. Physical Chemistry Chemical Physics, 2019, 21, 1724-1736.                                                                                  | 2.8 | 12        |
| 25 | Design and synthesis of disubstituted and trisubstituted thiazoles as multifunctional fluorophores with large Stokes shifts. Dyes and Pigments, 2019, 166, 60-71.                                                                                                           | 3.7 | 23        |
| 26 | Determination of Hyperfine Coupling Constants of Fluorinated Diphenylacetylene Radical Anions by<br>Magnetic Field-Affected Reaction Yield Spectroscopy. Journal of Physical Chemistry A, 2019, 123, 505-516.                                                               | 2.5 | 3         |
| 27 | Nuclear MET requires ARF and is inhibited by carbon nanodots through binding to phospho-tyrosine in prostate cancer. Oncogene, 2019, 38, 2967-2983.                                                                                                                         | 5.9 | 21        |
| 28 | X-ray Generated Recombination Exciplexes of Substituted Diphenylacetylenes with Tertiary Amines: A<br>Versatile Experimental Vehicle for Targeted Creation of Deep-Blue Electroluminescent Systems.<br>Journal of Physical Chemistry A, 2018, 122, 1235-1252.               | 2.5 | 6         |
| 29 | Ultrafast excited state decay of natural UV filters: from intermolecular hydrogen bonds to a conical intersection. Physical Chemistry Chemical Physics, 2018, 20, 15074-15085.                                                                                              | 2.8 | 3         |
| 30 | Highlights on the Road towards Highly Emitting Solidâ€State Luminophores: Two Classes of<br>Thiazoleâ€Based Organoboron Fluorophores with the AIEE/AIE Effect. Chemistry - an Asian Journal, 2018,<br>13, 311-324.                                                          | 3.3 | 24        |
| 31 | An effective and facile synthesis of new blue fluorophores on the basis of an 8-azapurine core.<br>Organic and Biomolecular Chemistry, 2018, 16, 9420-9429.                                                                                                                 | 2.8 | 11        |
| 32 | Fluorescent boron complexes based on new <i>N</i> , <i>O</i> -chelates as promising candidates for flow cytometry. Organic and Biomolecular Chemistry, 2018, 16, 5150-5162.                                                                                                 | 2.8 | 20        |
| 33 | Synthesis and Fluorescent Behaviour of 2-Aryl-4,5-dihydro-1 <i>H</i> -1,2,4-triazoles. Journal of Organic Chemistry, 2017, 82, 86-100.                                                                                                                                      | 3.2 | 13        |
| 34 | Synthesis of Thiazoles Bearing Aryl Enamine/Azaâ€enamine Side Chains: Effect of the Ï€â€Conjugated Spacer<br>Structure and Hydrogen Bonding on Photophysical Properties. European Journal of Organic<br>Chemistry, 2017, 2017, 4175-4187.                                   | 2.4 | 18        |
| 35 | Topology <i>vs.</i> thermodynamics in chemical reactions: the instability of PH <sub>5</sub> . Physical Chemistry Chemical Physics, 2017, 19, 27779-27785.                                                                                                                  | 2.8 | 9         |
| 36 | Synthesis of 5â€Acylâ€2â€Aminoâ€3â€Cyanothiophenes: Chemistry and Fluorescent Properties. Chemistry - an<br>Asian Journal, 2017, 12, 2410-2425.                                                                                                                             | 3.3 | 10        |

ENRICO BENASSI

| #  | Article                                                                                                                                                                                                                                                           | IF         | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| 37 | Benchmarking of density functionals for a soft but accurate prediction and assignment of<br><sup>1</sup> H and <sup>13</sup> C NMR chemical shifts in organic and biological molecules. Journal<br>of Computational Chemistry, 2017, 38, 87-92.                   | 3.3        | 28        |
| 38 | 2-Aryl-5-amino-1,2,3-triazoles: New effective blue-emitting fluorophores. Dyes and Pigments, 2017, 136, 229-242.                                                                                                                                                  | 3.7        | 27        |
| 39 | Synthesis of 2â€Arylâ€1,2,3â€triazoles by Oxidative Cyclization of 2â€(Arylazo)etheneâ€1,1â€diamines: A Oneâ€<br>Approach. European Journal of Organic Chemistry, 2016, 2016, 2700-2710.                                                                          | Pot<br>2.4 | 21        |
| 40 | Hypervalency in Organic Crystals: A Case Study of the Oxicam Sulfonamide Group. Journal of Physical Chemistry A, 2016, 120, 10289-10296.                                                                                                                          | 2.5        | 12        |
| 41 | Efficient Excitedâ€ <del>S</del> tate Symmetry Breaking in a Cationic Quadrupolar System Bearing Diphenylamino<br>Donors. ChemPhysChem, 2016, 17, 136-146.                                                                                                        | 2.1        | 42        |
| 42 | Source function and plane waves: Toward complete bader analysis. Journal of Computational Chemistry, 2016, 37, 2133-2139.                                                                                                                                         | 3.3        | 8         |
| 43 | Presence of Two Emissive Minima in the Lowest Excited State of a Push–Pull Cationic Dye<br>Unequivocally Proved by Femtosecond Up-Conversion Spectroscopy and Vibronic<br>Quantum-Mechanical Computations. Journal of Physical Chemistry B, 2015, 119, 6035-6040. | 2.6        | 37        |
| 44 | General Strategy for Computing Nonlinear Optical Properties of Large Neutral and Cationic Organic Chromophores in Solution. Journal of Physical Chemistry B, 2015, 119, 3155-3173.                                                                                | 2.6        | 50        |
| 45 | Effect of the π Bridge and Acceptor on Intramolecular Charge Transfer in Push–Pull Cationic<br>Chromophores: An Ultrafast Spectroscopic and TDâ€ÐFT Computational Study. ChemPhysChem, 2015, 16,<br>1440-1450.                                                    | 2.1        | 40        |
| 46 | An integrated computational tool to model the broadening of the absorption bands of flexible dyes in solution: cationic chromophores as test cases. Physical Chemistry Chemical Physics, 2014, 16, 26963-26973.                                                   | 2.8        | 17        |
| 47 | Exciton Transfer of Azobenzene Derivatives in Self-Assembled Monolayers. Journal of Physical<br>Chemistry C, 2013, 117, 25026-25041.                                                                                                                              | 3.1        | 16        |
| 48 | Polyhalogenated aminobenzonitriles vs. their co-crystals with 18-crown-6: amino group position as a tool to control crystal packing and solid-state fluorescence. CrystEngComm, 0, , .                                                                            | 2.6        | 1         |
| 49 | Symmetric Spirenes: Promising Building Blocks for New Generation Opto-Electronic Materials.<br>Physical Chemistry Chemical Physics, 0, , .                                                                                                                        | 2.8        | 0         |