
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Interaction Intimacy Affects Structure and Coevolutionary Dynamics in Mutualistic Networks. Current Biology, 2007, 17, 1797-1803.	3.9	188
2	Spatial structure of ant–plant mutualistic networks. Oikos, 2013, 122, 1643-1648.	2.7	126
3	Cheating the cheater: domatia loss minimizes the effects of ant castration in an Amazonian ant-plant. Oecologia, 2002, 133, 200-205.	2.0	96
4	Sustainability Agenda for the Pantanal Wetland: Perspectives on a Collaborative Interface for Science, Policy, and Decision-Making. Tropical Conservation Science, 2019, 12, 194008291987263.	1.2	88
5	Individual-Based Ant-Plant Networks: Diurnal-Nocturnal Structure and Species-Area Relationship. PLoS ONE, 2014, 9, e99838.	2.5	71
6	The structure of ant–plant ecological networks: Is abundance enough?. Ecology, 2014, 95, 475-485.	3.2	68
7	Experimental Plasmodium vivax infection of key Anopheles species from the Brazilian Amazon. Malaria Journal, 2013, 12, 460.	2.3	63
8	The numbers of the beast: Valuation of jaguar (Panthera onca) tourism and cattle depredation in the Brazilian Pantanal. Global Ecology and Conservation, 2017, 11, 106-114.	2.1	58
9	Efficiency of different planted forests in recovering biodiversity and ecological interactions in Brazilian Amazon. Forest Ecology and Management, 2015, 339, 105-111.	3.2	33
10	Soil and vegetation features determine the nested pattern of ant–plant networks in a tropical rainforest. Ecological Entomology, 2013, 38, 374-380.	2.2	32
11	Mansonella ozzardi in Brazil: prevalence of infection in riverine communities in the Purus region, in the state of Amazonas. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 74-80.	1.6	31
12	The impact of herd composition and foraging area on livestock predation by big cats in the <scp>P</scp> antanal of <scp>B</scp> razil. Animal Conservation, 2015, 18, 539-547.	2.9	31
13	Leaf damage induces ant recruitment in the Amazonian ant-plant Hirtella myrmecophila. Journal of Tropical Ecology, 2004, 20, 675-682.	1.1	30
14	Strength of the modular pattern in Amazonian symbiotic ant–plant networks. Arthropod-Plant Interactions, 2013, 7, 455-461.	1,1	30
15	Temporal variation in extrafloral nectar secretion in different ontogenic stages of the fruits of <i>Alibertia verrucosa</i> S. Moore (Rubiaceae) in a Neotropical savanna. Journal of Plant Interactions, 2014, 9, 137-142.	2.1	30
16	Trends and gaps of the scientific literature about the effects of fire on Brazilian Cerrado. Biota Neotropica, 2018, 18, .	0.5	26
17	Advances and barriers to the development of jaguar-tourism in the Brazilian Pantanal. Perspectives in Ecology and Conservation, 2017, 15, 61-63.	1.9	25
18	The influence of spatial sampling scales on ant–plant interaction network architecture. Journal of Animal Ecology, 2019, 88, 903-914.	2.8	25

#	Article	IF	CITATIONS
19	Ants and plant size shape the structure of the arthropod community of Hirtella myrmecophila, an Amazonian ant-plant. Ecological Entomology, 2005, 30, 650-656.	2.2	23
20	Poor alignment of priorities between scientists and policymakers highlights the need for evidence-informed conservation in Brazil. Perspectives in Ecology and Conservation, 2018, 16, 125-132.	1.9	22
21	AULACOTHRIPS DICTYOTUS (HETEROTHRIPIDAE), THE FIRST ECTOPARASITIC THRIPS (THYSANOPTERA). Florida Entomologist, 2002, 85, 281-283.	0.5	20
22	Speciesâ€level drivers of mammalian ectoparasite faunas. Journal of Animal Ecology, 2020, 89, 1754-1765.	2.8	20
23	Recognition of Host Plant Volatiles by <i>Pheidole minutula</i> Mayr (Myrmicinae), an Amazonian Antâ€Plant Specialist. Biotropica, 2009, 41, 642-646.	1.6	19
24	Asymmetric Dispersal and Colonization Success of Amazonian Plant-Ants Queens. PLoS ONE, 2011, 6, e22937.	2.5	19
25	Congruent spatial patterns of ant and tree diversity in Neotropical savannas. Biodiversity and Conservation, 2019, 28, 1075-1089.	2.6	18
26	Differential Recruitment of Camponotus femoratus (Fabricius) Ants in Response to Ant Garden Herbivory. Neotropical Entomology, 2014, 43, 519-525.	1.2	16
27	Infanticide in a jaguar (Panthera onca) population—does the provision of livestock carcasses increase the risk?. Acta Ethologica, 2017, 20, 69-73.	0.9	16
28	Functional necrophilia: a profitable anuran reproductive strategy?. Journal of Natural History, 2012, 46, 2961-2967.	0.5	15
29	Floral resource partitioning by ants and bees in a jambolan Syzygium jambolanum (Myrtaceae) agroforestry system in Brazilian Meridional Amazon. Agroforestry Systems, 2012, 85, 105-111.	2.0	15
30	Major biases and knowledge gaps on fragmentation research in Brazil: Implications for conservation. Biological Conservation, 2020, 251, 108749.	4.1	15
31	Parabiosis between basal fungus-growing ants (Formicidae, Attini). Insectes Sociaux, 2008, 55, 296-300.	1.2	13
32	Cooperative colony founding alters the outcome of interspecific competition between Amazonian plant-ants. Insectes Sociaux, 2009, 56, 341-345.	1.2	13
33	Effect of mutualist partner identity on plant demography. Ecology, 2014, 95, 3237-3243.	3.2	13
34	Amazon Rainforest Ant-Fauna of Parque Estadual do Cristalino: Understory and Ground-Dwelling Ants. Sociobiology, 2016, 63, 894.	0.5	12
35	Assemblage and functional categorization of dung beetles (Coleoptera: Scarabaeinae) from the Pantanal. PeerJ, 2017, 5, e3978.	2.0	12
36	Climate variability and aridity modulate the role of leaf shelters for arthropods: A global experiment. Global Change Biology, 2022, 28, 3694-3710.	9.5	12

#	Article	IF	CITATIONS
37	The restoration of termite diversity in different reforestated forests. Agroforestry Systems, 2016, 90, 395-404.	2.0	11
38	Rapid assessment of fruit-color selection by birds using artificial fruits at local scale in Central Amazonia. Acta Amazonica, 2008, 38, 291-296.	0.7	10
39	Biased research generates large gaps on invertebrate biota knowledge in Brazilian freshwater ecosystems. Perspectives in Ecology and Conservation, 2020, 18, 190-196.	1.9	9
40	The Program for Biodiversity Research in Brazil: The role of regional networks for biodiversity knowledge, dissemination, and conservation. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20201604.	0.8	9
41	Ant diversity studies in Brazil: an overview of the myrmecological research in a megadiverse country. Insectes Sociaux, 2022, 69, 105-121.	1.2	9
42	Taxonomic composition of Scarabaeinae dung beetles (Coleoptera: Scarabaeidae) inhabiting fluvial islands in the southern Brazilian Amazon. Annales De La Societe Entomologique De France, 2014, 50, 407-413.	0.9	7
43	Temperature Influence on Species Co-Occurrence Patterns in Treefall Gap and Dense Forest Ant Communities in a Terra- Firme Forest of Central Amazon, Brazil. Sociobiology, 2015, 59, 351.	0.5	7
44	Defining Habitat Use by the Parabiotic Ants Camponotus femoratus (Fabricius, 1804) and Crematogaster levior Longino, 2003. Sociobiology, 2017, 64, 373.	0.5	7
45	New record of a very specialized interaction: myrcidris epicharis Ward 1990 (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae) in Brazilian Meridional Amazon. Acta Amazonica, 2012, 42, 567-570.	0.7	7
46	Evidence for a stress hypothesis: hemiparasitism effect on the colonization of Alchornea	0.7	6
47	Why be red listed? Threatened Myriapoda species in Brazil with implications for their conservation. ZooKeys, 2018, 741, 255-269.	1.1	6
48	Temporal stability of cavityâ€nesting bee and wasp communities in different types of reforestation in southeastern Amazonia. Restoration Ecology, 2020, 28, 1528-1540.	2.9	5
49	Neutral and nicheâ€based factors simultaneously drive seed and invertebrate removal by red harvester ants. Ecological Entomology, 2021, 46, 816-826.	2.2	5
50	Seasonal variation of ground and arboreal ants in forest fragments in the highly-threatened Cerrado-Amazon transition. Journal of Insect Conservation, 2021, 25, 897.	1.4	5
51	Relação entre diferentes espécies de formigas e a mirmecófita Cordia nodosa Lamarck (Boraginaceae) em Ãjreas de mata ripÃjria na Amazônia mato-grossense. Acta Amazonica, 2011, 41, 355-360.	0.7	4
52	Re-establishment of cavity-nesting bee and wasp communities along a reforestation gradient in southern Amazonia. Oecologia, 2021, 196, 275-288.	2.0	4
53	Reconciling biome-wide conservation of an apex carnivore with land-use economics in the increasingly threatened Pantanal wetlands. Scientific Reports, 2021, 11, 22808.	3.3	4
54	Can Baited Pitfall Traps for Sampling Dung Beetles Replace Conventional Traps for Sampling Ants?. Sociobiology, 2020, 67, 376.	0.5	4

#	Article	IF	CITATIONS
55	Beyond the gardens: The extended mutualism from antâ€garden ants to nectaryâ€bearing plants growing in Amazon treeâ€fall gaps. Biotropica, 2021, 53, 433-441.	1.6	3
56	A metaâ€analysis of the effects of fragmentation on the megadiverse herpetofauna of Brazil. Biotropica, 2021, 53, 726-737.	1.6	3
57	The influence of climatic parameters in the haematophagic daily activity of Cerqueirellum argentiscutum (Shelley & Luna Dias) (Diptera: Simuliidae) in Amazonas, Brazil. Acta Amazonica, 2006, 36, 563-568.	0.7	3
58	Fire and flood: How the Pantanal ant communities respond to multiple disturbances?. Perspectives in Ecology and Conservation, 2022, 20, 197-204.	1.9	3
59	New approaches need updated database: aÂcritique of Levin etÂal. 2015. Ecological Applications, 2016, 26, 2358-2358.	3.8	2
60	Postponing the production of ant domatia as a strategy promoting an escape from flooding in an Amazonian myrmecophyte. Annals of Botany, 2018, 122, 985-991.	2.9	2
61	Is being green what matters? Functional diversity of cavityâ€nesting bees and wasps and their interaction networks with parasites in different reforestation types in Amazonia. Insect Conservation and Diversity, 2021, 14, 620-634.	3.0	2
62	Safe sex: ant defense does not interfere with pollination in passion flowers. Acta Botanica Brasilica, 2021, 35, 290-297.	0.8	2
63	Jardins de formigas: qual o estado do conhecimento sobre essas interações mutualÃsticas entre formigas e plantas?. Boletim Do Museu Paraense EmÃŀio Goeldi Ciências Naturais (Impresso), 2020, 15, 55-63.	0.2	2
64	Effect of dominant parabiotic Antâ€Garden ants on the understory and groundâ€dwelling ant assemblage in the Amazon rainforest. Insect Conservation and Diversity, 2021, 14, 95-106.	3.0	1
65	The Geographic Distribution of Parasite-Induced Fruit Mimicry in <i>Cephalotes atratus</i> (Formicidae: Myrmicinae). Journal of Parasitology, 2013, 99, 155-157.	0.7	0
66	Biogeographic and fragmentation-related research biases on antbirds and non-flying small mammals in Brazil. Journal of Tropical Ecology, 2021, 37, 175-184.	1.1	0
67	Estudo demonstra que o sucesso reprodutivo de uma planta mirmecófita é determinado pela a identidade da formiga associada. Acta Amazonica, 2011, 41, .	0.7	0