List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4604059/publications.pdf Version: 2024-02-01

KATIA LOOS

#	Article	IF	CITATIONS
1	Synthesis of polyvinylidene fluoride and its copolymers. , 2022, , 85-112.		2
2	Influence of different ester side groups in polymers on the vapor phase infiltration with trimethyl aluminum. Dalton Transactions, 2022, 51, 1384-1394.	1.6	3
3	A more efficient synthesis and properties of saturated and unsaturated starch esters. Carbohydrate Polymers, 2022, 292, 119649.	5.1	10
4	Enzymatic transesterification of urethane-bond containing ester. Colloid and Polymer Science, 2021, 299, 561-573.	1.0	5
5	Enzymatic synthesis and characterization of muconic acidâ€based unsaturated polymer systems. Polymer International, 2021, 70, 555-563.	1.6	7
6	Sustainable Photopolymers in 3D Printing: A Review on Biobased, Biodegradable, and Recyclable Alternatives. Macromolecular Rapid Communications, 2021, 42, e2000475.	2.0	105
7	Tunable wettability of polymer films by partial engulfment of nanoparticles. Physical Review Materials, 2021, 5, .	0.9	1
8	Proton conducting ABA triblock copolymers with sulfonated poly(phenylene sulfide sulfone) midblock obtained via copper-free thiol-click chemistry. Polymer Chemistry, 2021, 12, 2563-2571.	1.9	3
9	Robust Superamphiphilic Membrane with a Closed‣oop Life Cycle. Advanced Materials, 2021, 33, e2008460.	11.1	32
10	Physicochemical properties of heat-moisture treated, stearic acid complexed starch: The effect of complexation time and temperature. International Journal of Biological Macromolecules, 2021, 175, 98-107.	3.6	15
11	Strategies for the synthesis of sequence-controlled glycopolymers and their potential for advanced applications. Progress in Polymer Science, 2021, 117, 101393.	11.8	10
12	Enzymatic Synthesis of Muconic Acid-Based Polymers: Trans, Trans-Dimethyl Muconate and Trans, β-Dimethyl Hydromuconate. Polymers, 2021, 13, 2498.	2.0	5
13	Physicochemical properties of heat-moisture treated, sodium stearate complexed starch: The effect of sodium stearate concentration. Carbohydrate Polymers, 2021, 269, 118263.	5.1	8
14	Recommendations for replacing PET on packaging, fiber, and film materials with biobased counterparts. Green Chemistry, 2021, 23, 8795-8820.	4.6	77
15	Biocatalytic Synthesis of Furan-Based Oligomer Diols with Enhanced End-Group Fidelity. ACS Sustainable Chemistry and Engineering, 2020, 8, 1068-1086.	3.2	34
16	Enhancement of <i>T</i> _g of Poly(<scp>l</scp> â€lactide) by Incorporation of Biobased Mandelicâ€Acidâ€Derived Phenyl Groups by Polymerization and Polymer Blending. Macromolecular Chemistry and Physics, 2020, 221, 1900392.	1.1	6
17	Morphological Characteristics of Amyloseâ€Poly(tetrahydrofuran) Inclusion Complexes Depending on Temperature and Concentration. Macromolecular Chemistry and Physics, 2020, 221, 2000122.	1.1	6
18	Progress and perspective on polymer templating of multifunctional oxide nanostructures. Journal of Applied Physics, 2020, 128, 190903.	1.1	7

#	Article	IF	CITATIONS
19	A Perspective on PEF Synthesis, Properties, and End-Life. Frontiers in Chemistry, 2020, 8, 585.	1.8	110
20	Highly Stable Membranes of Poly(phenylene sulfide benzimidazole) Cross-Linked with Polyhedral Oligomeric Silsesquioxanes for High-Temperature Proton Transport. ACS Applied Energy Materials, 2020, 3, 7873-7884.	2.5	21
21	Multienzymatic immobilization of laccases on polymeric microspheres: A strategy to expand the maximum catalytic efficiency. Journal of Applied Polymer Science, 2020, 137, 49562.	1.3	10
22	Green Pathways for the Enzymatic Synthesis of Furan-Based Polyesters and Polyamides. ACS Symposium Series, 2020, , 3-29.	0.5	6
23	Can Ferroelectricity Improve Organic Solar Cells?. Macromolecular Rapid Communications, 2020, 41, e2000124.	2.0	4
24	Supramolecular Polymer Brushes: Influence of Molecular Weight and Cross-Linking on Linear Viscoelastic Behavior. Macromolecules, 2020, 53, 4810-4820.	2.2	4
25	Order–disorder transition in supramolecular polymer combs/brushes with polymeric side chains. Polymer Chemistry, 2020, 11, 2749-2760.	1.9	5
26	PVDF-based multiferroic. , 2020, , 45-81.		4
27	On the way to greener furanic-aliphatic poly(ester amide)s: Enzymatic polymerization in ionic liquid. Polymer, 2020, 205, 122662.	1.8	22
28	Lithium and magnesium polymeric electrolytes prepared using poly(glycidyl ether)-based polymers with short grafted chains. Polymer Chemistry, 2020, 11, 2070-2079.	1.9	6
29	Lipase-Catalyzed Transamidation of Urethane-Bond-Containing Ester. ACS Omega, 2020, 5, 1488-1495.	1.6	4
30	Photopolymer Resins with Biobased Methacrylates Based on Soybean Oil for Stereolithography. ACS Applied Polymer Materials, 2020, 2, 949-957.	2.0	91
31	Improved energy density and charge-discharge efficiency in solution processed highly defined ferroelectric block copolymer-based dielectric nanocomposites. Nano Energy, 2019, 64, 103939.	8.2	17
32	Synthesis of glycomonomers via biocatalytic methods. Methods in Enzymology, 2019, 627, 215-247.	0.4	6
33	Chemical Solution Deposition of Ordered 2D Arrays of Room-Temperature Ferrimagnetic Cobalt Ferrite Nanodots. Polymers, 2019, 11, 1598.	2.0	7
34	In Honor of Reimund Stadler. Macromolecular Chemistry and Physics, 2019, 220, 1900370.	1.1	0
35	Green Synthesis of Glycopolymers Using an Enzymatic Approach. Macromolecular Chemistry and Physics, 2019, 220, 1900219.	1.1	16
36	Supramolecular Mimic for Bottlebrush Polymers in Bulk. ACS Omega, 2019, 4, 16481-16492.	1.6	12

#	Article	IF	CITATIONS
37	Bioâ€based polyurethane films using white dextrins. Journal of Applied Polymer Science, 2019, 136, 47454.	1.3	14
38	Tuning the dielectric behavior of poly(vinylidene fluoride- <i>co</i> -vinyl alcohol) using a facile urethane-based crosslinking method. Polymer Chemistry, 2019, 10, 1335-1343.	1.9	8
39	Physical pinning and chemical crosslinking-induced relaxor ferroelectric behavior in P(VDF- <i>ter</i> -TrFE- <i>ter</i> -VA) terpolymers. Journal of Materials Chemistry A, 2019, 7, 2795-2803.	5.2	17
40	Polymer-based multiferroic nanocomposites via directed block copolymer self-assembly. Journal of Materials Chemistry C, 2019, 7, 968-976.	2.7	20
41	Amyloseâ€Coated Biohybrid Microgels by Phosphorylaseâ€Catalyzed Graftingâ€From Polymerization. Macromolecular Rapid Communications, 2019, 40, 1900144.	2.0	4
42	Synthesis of Polysaccharides II: Phosphorylase as Catalyst. Green Chemistry and Sustainable Technology, 2019, , 47-87.	0.4	9
43	Polyurethane Coatings Based on Renewable White Dextrins and Isocyanate Trimers. Macromolecular Rapid Communications, 2019, 40, 1800874.	2.0	7
44	Electroactive materials with tunable response based on block copolymer self-assembly. Nature Communications, 2019, 10, 601.	5.8	44
45	Green Polyurethanes from Renewable Isocyanates and Biobased White Dextrins. Polymers, 2019, 11, 256.	2.0	46
46	Pronounced Surface Effects on the Curie Transition Temperature in Nanoconfined P(VDF-TrFE) Crystals. Macromolecules, 2019, 52, 1567-1576.	2.2	12
47	Deciphering Structures of Inclusion Complexes of Amylose with Natural Phenolic Amphiphiles. ACS Omega, 2019, 4, 17807-17813.	1.6	13
48	Preface. Methods in Enzymology, 2019, 627, xv-xix.	0.4	3
49	A Critical Approach to Polymer Dynamics in Supramolecular Polymers. Macromolecules, 2019, 52, 9427-9444.	2.2	49
50	Tailored Self-Assembled Ferroelectric Polymer Nanostructures with Tunable Response. Macromolecules, 2019, 52, 354-364.	2.2	12
51	Electroactive behavior on demand in Poly(vinylidene fluoride-co-vinyl alcohol) copolymers. Materials Today Energy, 2019, 11, 83-88.	2.5	10
52	Synthesis and Self-Assembly of Double-Hydrophilic and Amphiphilic Block Glycopolymers. Biomacromolecules, 2019, 20, 1325-1333.	2.6	27
53	Furanâ€Based Copolyesters from Renewable Resources: Enzymatic Synthesis and Properties. ChemSusChem, 2019, 12, 990-999.	3.6	73
54	A new way to improve physicochemical properties of potato starch. Carbohydrate Polymers, 2019, 204, 1-8.	5.1	34

#	Article	IF	CITATIONS
55	Production of levan by Bacillus licheniformis NS032 in sugar beet molasses-based medium. International Journal of Biological Macromolecules, 2019, 121, 142-151.	3.6	54
56	Biobased Acrylate Photocurable Resin Formulation for Stereolithography 3D Printing. ACS Omega, 2018, 3, 1403-1408.	1.6	184
57	Synthesis of (meth)acrylamide-based glycomonomers using renewable resources and their polymerization in aqueous systems. Green Chemistry, 2018, 20, 476-484.	4.6	27
58	Stereolithographic 3D Printing with Renewable Acrylates. Journal of Visualized Experiments, 2018, , .	0.2	6
59	Fabrication of Nanoâ€5ized Hybrid Janus Particles from Strawberry‣ike Hierarchical Composites. Macromolecular Chemistry and Physics, 2018, 219, 1800267.	1.1	7
60	Hierarchical Self-Assembly of Supramolecular Double-Comb Triblock Terpolymers. ACS Macro Letters, 2018, 7, 1168-1173.	2.3	16
61	Environmentally friendly pathways towards the synthesis of vinyl-based oligocelluloses. Carbohydrate Polymers, 2018, 193, 196-204.	5.1	24
62	Enzymatic Polymerization of Dimethyl 2,5-Furandicarboxylate and Heteroatom Diamines. ACS Omega, 2018, 3, 7077-7085.	1.6	46
63	Linear Viscoelasticity of Weakly Hydrogen-Bonded Polymers near and below the Sol–Gel Transition. Macromolecules, 2018, 51, 4910-4916.	2.2	23
64	CuAAC click chemistry: a versatile approach towards PVDF-based block copolymers. Polymer Chemistry, 2018, 9, 3714-3720.	1.9	22
65	Nanoconfinement-Induced β-Phase Formation Inside Poly(vinylidene fluoride)-Based Block Copolymers. ACS Macro Letters, 2018, 7, 863-867.	2.3	36
66	Ringâ€Opening Polymerization of a New Diester Cyclic Dimer of Mandelic and Glycolic Acid: An Efficient Synthesis Method for Derivatives of Amorphous Polyglycolide with High <i>T</i> _g . Macromolecular Rapid Communications, 2018, 39, e1700865.	2.0	8
67	Facile Esterification of Degraded and Nonâ€Degraded Starch. Macromolecular Chemistry and Physics, 2018, 219, 1800231.	1.1	13
68	An Environmentally-Friendly Approach To Synthesize Vinyl-Based Oligocelluloses. , 2018, , .		0
69	Facile Fabrication, Structures, and Properties of Laserâ€Marked Polyacrylamide/Bi ₂ O ₃ Hydrogels. Advanced Engineering Materials, 2017, 19, 1600826.	1.6	13
70	Asymmetric supramolecular double-comb diblock copolymers: From plasticization, to confined crystallization, to breakout. Polymer, 2017, 121, 312-319.	1.8	7
71	Free-standing thermo-responsive nanoporous membranes from high molecular weight PS-PNIPAM block copolymers synthesized <i>via</i> RAFT polymerization. Polymer Chemistry, 2017, 8, 2235-2243. 	1.9	37
72	Design and Fabrication of Janus Nanoparticles for Interfacial Distribution in Block Copolymers. Macromolecular Chemistry and Physics, 2017, 218, 1600451.	1.1	11

#	Article	IF	CITATIONS
73	Janus nanoparticles inside polymeric materials: interfacial arrangement toward functional hybrid materials. Polymer Chemistry, 2017, 8, 641-654.	1.9	52
74	Enzymatic approach for the synthesis of biobased aromatic–aliphatic oligo-/polyesters. Polymer Chemistry, 2017, 8, 6795-6805.	1.9	27
75	Increased drug load and polymer compatibility of bilayered orodispersible films. European Journal of Pharmaceutical Sciences, 2017, 107, 183-190.	1.9	32
76	The Origin of Hierarchical Structure Formation in Highly Grafted Symmetric Supramolecular Double omb Diblock Copolymers. Macromolecular Rapid Communications, 2017, 38, 1700288.	2.0	8
77	Nickel Network Derived from a Block Copolymer Template for MnO ₂ Electrodes as Dimensionally Stabilized Lithiumâ€lon Battery Anodes. Energy Technology, 2017, 5, 715-724.	1.8	4
78	The Recent Developments in Biobased Polymers toward General and Engineering Applications: Polymers that are Upgraded from Biodegradable Polymers, Analogous to Petroleum-Derived Polymers, and Newly Developed. Polymers, 2017, 9, 523.	2.0	280
79	Perpendicular Structure Formation of Block Copolymer Thin Films during Thermal Solvent Vapor Annealing: Solvent and Thickness Effects. Polymers, 2017, 9, 525.	2.0	13
80	Polymer Inclusion Membranes (PIM) for the Recovery of Potassium in the Presence of Competitive Cations. Polymers, 2016, 8, 76.	2.0	20
81	Enzymatic Synthesis of Biobased Polyesters and Polyamides. Polymers, 2016, 8, 243.	2.0	181
82	Ammonium across a Selective Polymer Inclusion Membrane: Characterization, Transport, and Selectivity. Macromolecular Rapid Communications, 2016, 37, 858-864.	2.0	9
83	Highly Ordered Structure Formation in RAFT-Synthesized PtBOS- <i>b</i> P4VP Diblock Copolymers. Macromolecular Rapid Communications, 2016, 37, 911-919.	2.0	9
84	Effect of Diffusion and Migration on the Selectivity of a Polymer Inclusion Membrane Containing Dicyclohexanoâ€18â€crownâ€6. Macromolecular Chemistry and Physics, 2016, 217, 1600-1606.	1.1	3
85	Self-assembly of hydrogen-bonded comb copolymer complexes of poly(p -hydroxystyrene) and 4-alkylpyridine amphiphiles. Polymer, 2016, 92, 273-282.	1.8	2
86	Editorial: Self-assembly. Polymer, 2016, 107, 341-342.	1.8	2
87	Hierarchical structure formation in supramolecular comb-shaped block copolymers. Polymer, 2016, 107, 343-356.	1.8	26
88	Hierarchical Layer Engineering Using Supramolecular Doubleâ€Comb Diblock Copolymers. Angewandte Chemie, 2016, 128, 13275-13279.	1.6	0
89	Hierarchical Layer Engineering Using Supramolecular Doubleâ€Comb Diblock Copolymers. Angewandte Chemie - International Edition, 2016, 55, 13081-13085.	7.2	18
90	Enzymatic synthesis of 2,5-furandicarboxylic acid-based semi-aromatic polyamides: enzymatic polymerization kinetics, effect of diamine chain length and thermal properties. RSC Advances, 2016, 6, 67941-67953.	1.7	85

#	Article	IF	CITATIONS
91	Nanoporous polymer foams derived from high molecular PS-b-P4VP(PDP) _x for template-directed synthesis approaches. RSC Advances, 2016, 6, 52998-53003.	1.7	3
92	Clinoptilolite-based mixed matrix membranes for the selective recovery of potassium and ammonium. Water Research, 2016, 90, 62-70.	5.3	30
93	The effect of guanidinium functionalization on the structural properties and anion affinity of polyelectrolyte multilayers. Soft Matter, 2016, 12, 1496-1505.	1.2	26
94	Cu(II) immobilization onto a one-step synthesized poly(4-vinylpyridine-co-ethylene glycol) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50 622 Td (
95	Synthesis of Telechelic and Three-Arm Polytetrahydrofuran- <i>block</i> -amylose. Macromolecular Chemistry and Physics, 2015, 216, 1091-1102.	1.1	5

96	Facile Synthesis and Structural Characterization of Amylose–Fatty Acid Inclusion Complexes. Macromolecular Bioscience, 2015, 15, 691-697.	2.1	25
97	Bioinspired Synthesis of Well-Ordered Layered Organic-Inorganic Nanohybrids: Mimicking the Natural Processing of Nacre by Mineralization of Block Copolymer Templates. Macromolecular Rapid Communications, 2015, 36, 1756-1760.	2.0	10
98	Synthesis of Amyloseâ€ <i>b</i> â€₽ ₂ VP Block Copolymers. Macromolecular Rapid Communications, 2015, 36, 2097-2101.	2.0	8
99	Interaction Strength in Poly(4-vinylpyridine)– <i>n</i> -Alkylphenol Supramolecular Comb-Shaped Copolymers. Macromolecules, 2015, 48, 1554-1562.	2.2	26
100	Effect of supercritical CO2 on the morphology and fluorescent behavior of fluorinated polyylidenefluorenes derivative/graphene oxide nanohybrids. Materials Letters, 2015, 158, 147-150.	1.3	8
101	Rheological properties of wheat starch influenced by amylose–lysophosphatidylcholine complexation at different gelation phases. Carbohydrate Polymers, 2015, 122, 197-201.	5.1	23
102	Copolyesters Made from 1,4-Butanediol, Sebacic Acid, and <scp>d</scp> -Glucose by Melt and Enzymatic Polycondensation. Biomacromolecules, 2015, 16, 868-879.	2.6	56
103	Imaging inclusion complex formation in starch granules using confocal laser scanning microscopy. Starch/Staerke, 2015, 67, 132-138.	1.1	22
104	High performance alkyd resins synthesized from postconsumer PET bottles. RSC Advances, 2015, 5, 62273-62283.	1.7	33
105	A biocatalytic approach towards sustainable furanic–aliphatic polyesters. Polymer Chemistry, 2015, 6, 5198-5211.	1.9	126
106	Environmentally benign synthesis of saturated and unsaturated aliphatic polyesters via enzymatic polymerization of biobased monomers derived from renewable resources. Polymer Chemistry, 2015, 6, 5451-5463.	1.9	81
107	Localization and dynamics of amylose–lipophilic molecules inclusion complex formation in starch granules. Physical Chemistry Chemical Physics, 2015, 17, 7864-7871.	1.3	14

108Synthesis of carbon microrings using polymer blends as templates. RSC Advances, 2015, 5, 33294-33298.1.75

#	Article	IF	CITATIONS
109	Enhanced Polystyrene Surface Mobility under Carbon Dioxide at Low Temperature for Nanoparticle Embedding Control. Macromolecules, 2015, 48, 1786-1794.	2.2	11
110	Inclusion Complexes Between Polytetrahydrofuranâ€ <i>b</i> â€Amylose Block Copolymers and Polytetrahydrofuran Chains. Macromolecular Bioscience, 2015, 15, 812-828.	2.1	14
111	Enzymatic Polymerization of Furan-2,5-Dicarboxylic Acid-Based Furanic-Aliphatic Polyamides as Sustainable Alternatives to Polyphthalamides. Biomacromolecules, 2015, 16, 3674-3685.	2.6	113
112	Poly(4-vinylpyridine)-block-poly(N-acryloylpiperidine) diblock copolymers: synthesis, self-assembly and interaction. Polymer Chemistry, 2015, 6, 7015-7026.	1.9	26
113	Characterization of Oligocellulose Synthesized by Reverse Phosphorolysis Using Different Cellodextrin Phosphorylases. Analytical Chemistry, 2015, 87, 9639-9646.	3.2	33
114	Synthesis of Polyamides and Their Copolymers via Enzymatic Polymerization. Journal of Renewable Materials, 2015, 3, 268-280.	1.1	19
115	Biocatalytic Synthesis of Maltodextrin-Based Acrylates from Starch and α-Cyclodextrin. Macromolecular Bioscience, 2014, 14, 1268-1279.	2.1	9
116	Solvent-Responsive Behavior of Inclusion Complexes Between Amylose and Polytetrahydrofuran. Macromolecular Bioscience, 2014, 14, 56-68.	2.1	25
117	Multiscale modeling of charge-induced deformation of nanoporous gold structures. Journal of the Mechanics and Physics of Solids, 2014, 66, 1-15.	2.3	48
118	Enzymeâ€Catalyzed Synthesis of Saccharide Acrylate Monomers from Nonedible Biomass. Chemistry - an Asian Journal, 2014, 9, 2156-2161.	1.7	9
119	Amylase catalyzed synthesis of glycosyl acrylates and their polymerization. Green Chemistry, 2014, 16, 203-210.	4.6	18
120	Lipase-Catalyzed Ring-Opening Copolymerization of ε-Caprolactone and β-Lactam. Biomacromolecules, 2014, 15, 234-241.	2.6	38
121	Back Cover: Macromol. Biosci. 1/2014. Macromolecular Bioscience, 2014, 14, 151-151.	2.1	Ο
122	Assessing the susceptibility of amylose–lysophosphatidylcholine complexes to amylase by the use of iodine. Starch/Staerke, 2014, 66, 576-581.	1.1	2
123	The effect of temperature and time on the formation of amylose–lysophosphatidylcholine inclusion complexes. Starch/Staerke, 2014, 66, 251-259.	1.1	16
124	Characterization of enzymatically synthesized amylopectin analogs via asymmetrical flow field flow fractionation. Polymer, 2014, 55, 6271-6277.	1.8	10
125	Double-crystalline PLLA-b-PVDF-b-PLLA triblock copolymers: preparation and crystallization. Polymer Chemistry, 2014, 5, 2219.	1.9	52
126	Chemo-enzymatic synthesis route to poly(glucosyl-acrylates) using glucosidase from almonds. Green Chemistry, 2014, 16, 1837-1846.	4.6	27

#	Article	IF	CITATIONS
127	Polysaccharide Biocatalysis: From Synthesizing Carbohydrate Standards to Establishing Characterization Methods. Macromolecular Chemistry and Physics, 2014, 215, 931-944.	1.1	7
128	Hierarchical Self-Assembly of Symmetric Supramolecular Double-Comb Diblock Copolymers: a Comb Density Study. Macromolecules, 2014, 47, 5913-5925.	2.2	26
129	Fully Biobased Unsaturated Aliphatic Polyesters from Renewable Resources: Enzymatic Synthesis, Characterization, and Properties. Macromolecular Chemistry and Physics, 2014, 215, 2185-2197.	1.1	58
130	Enzymatic Synthesis of Biobased Polyesters Using 2,5-Bis(hydroxymethyl)furan as the Building Block. Biomacromolecules, 2014, 15, 2482-2493.	2.6	154
131	Enzymatic Synthesis of Amylose Brushes Revisited: Details from Xâ€ <scp>R</scp> ay Photoelectron Spectroscopy and Spectroscopic Ellipsometry. Macromolecular Bioscience, 2014, 14, 186-194.	2.1	16
132	Well-defined copolymers based on poly(vinylidene fluoride): From preparation and phase separation to application. Journal of Polymer Science Part A, 2014, 52, 2861-2877.	2.5	73
133	Analysis of isoamylase debranched starches with size exclusion chromatography utilizing PFG columns. Carbohydrate Polymers, 2014, 112, 458-461.	5.1	13
134	Gyroid Nickel Nanostructures from Diblock Copolymer Supramolecules. Journal of Visualized Experiments, 2014, , .	0.2	1
135	Textural properties of poly(glycidyl methacrylate): acid-modified bentonite nanocomposites. Polymer Bulletin, 2013, 70, 1805-1818.	1.7	5
136	Functional End Groups in Polytetrahydrofuran. Macromolecular Chemistry and Physics, 2013, 214, 2602-2606.	1.1	6
137	Block copolymer template-directed synthesis of well-ordered metallic nanostructures. Polymer, 2013, 54, 2591-2605.	1.8	64
138	The influence of amylose-LPC complex formation on the susceptibility of wheat starch to amylase. Carbohydrate Polymers, 2013, 97, 436-440.	5.1	33
139	Influence of lysophosphatidylcholine on the gelation of diluted wheat starch suspensions. Carbohydrate Polymers, 2013, 93, 224-231.	5.1	47
140	A novel method of preparing metallic Janus silica particles using supercritical carbon dioxide. Nanoscale, 2013, 5, 10420.	2.8	32
141	The Dynamics of Complex Formation between Amylose Brushes on Gold and Fatty Acids by QCM-D. Biomacromolecules, 2013, 14, 3713-3722.	2.6	19
142	Enzyme-Catalyzed Synthesis of Aliphatic–Aromatic Oligoamides. Biomacromolecules, 2013, 14, 1600-1606.	2.6	55
143	Enzyme-Catalyzed Synthesis of Unsaturated Aliphatic Polyesters Based on Green Monomers from Renewable Resources. Biomolecules, 2013, 3, 461-480.	1.8	85
144	Block copolymer route towards poly(vinylidene fluoride)/poly(methacrylic acid)/nickel nanocomposites. RSC Advances, 2013, 3, 7938.	1.7	43

#	Article	IF	CITATIONS
145	Facile Preparation Method for Inclusion Complexes between Amylose and Polytetrahydrofurans. Biomacromolecules, 2013, 14, 575-583.	2.6	59
146	Hierarchical Self-Assembly in Supramolecular Double-Comb Diblock Copolymer Complexes. Macromolecules, 2013, 46, 500-517.	2.2	25
147	Poly(vinylidene fluoride)/nickel nanocomposites from semicrystalline block copolymer precursors. Nanoscale, 2013, 5, 184-192.	2.8	57
148	Anionic PPV polymerization from the sulfinyl precursor route: Block copolymer formation from sequential addition of monomers. Polymer, 2013, 54, 1298-1304.	1.8	16
149	Fusarium solani pisi cutinase-catalyzed synthesis of polyamides. European Polymer Journal, 2013, 49, 834-842.	2.6	51
150	Synthesis of branched polysaccharides with tunable degree of branching. Carbohydrate Polymers, 2013, 93, 31-37.	5.1	48
151	Assessment of the influence of amylose-LPC complexation on the extent of wheat starch digestibility by size-exclusion chromatography. Food Chemistry, 2013, 141, 4318-4323.	4.2	21
152	Synthesis of lactams using enzyme-catalyzed aminolysis. Tetrahedron Letters, 2013, 54, 370-372.	0.7	37
153	Synthesis of Amylose–Polystyrene Inclusion Complexes by a Facile Preparation Route. Biomacromolecules, 2013, 14, 1955-1960.	2.6	39
154	Papain Catalyzed Synthesis of Protected Amino Acid Amides. Journal of Renewable Materials, 2013, 1, 73-78.	1.1	9
155	Improved Performance of Pseudomonas fluorescens lipase by covalent immobilization onto Amberzyme. Turkish Journal of Biochemistry, 2013, 38, 313-318.	0.3	4
156	Tunable Properties of Inclusion Complexes Between Amylose and Polytetrahydrofuran. Macromolecular Bioscience, 2013, 13, 767-776.	2.1	37
157	Physical properties and structure of enzymatically synthesized amylopectin analogs. Starch/Staerke, 2013, 65, 1061-1068.	1.1	12
158	Shearâ€Induced Orientation of Gyroid PSâ€ <i>b</i> â€P4VP(PDP) Supramolecules. Macromolecular Rapid Communications, 2013, 34, 1208-1212.	2.0	10
159	Papain Catalyzed (co)Oligomerization of α-Amino Acids. Polymers, 2012, 4, 710-740.	2.0	34
160	Synthesis of Hyperbranched Glycoconjugates by the Combined Action of Potato Phosphorylase and Glycogen Branching Enzyme from Deinococcus geothermalis. Polymers, 2012, 4, 674-690.	2.0	22
161	Double Gyroid Network Morphology in Supramolecular Diblock Copolymer Complexes. Macromolecules, 2012, 45, 3503-3512.	2.2	47
162	Hexagonally Perforated Layer Morphology in PS- <i>b</i> P4VP(PDP) Supramolecules. Macromolecules, 2012, 45, 9409-9418.	2.2	44

#	Article	IF	CITATIONS
163	Poly(vinylidene fluoride)-functionalized single-walled carbon nanotubes for the preparation of composites with improved conductivity. Polymer Chemistry, 2012, 3, 2261.	1.9	19
164	Preparation and self-assembly of two-length-scale A-b-(B-b-A)n-b-B multiblock copolymers. Soft Matter, 2012, 8, 4479.	1.2	21
165	Size Exclusion Chromatography with Multi Detection in Combination with Matrix-Assisted Laser Desorption Ionization-Time-of-Flight Mass Spectrometry as a Tool for Unraveling the Mechanism of the Enzymatic Polymerization of Polysaccharides. Analytical Chemistry, 2012, 84, 10463-10470.	3.2	33
166	Immobilization of Mucor miehei Lipase onto Macroporous Aminated Polyethersulfone Membrane for Enzymatic Reactions. Membranes, 2012, 2, 198-213.	1.4	23
167	Immobilization of biocatalysts for enzymatic polymerizations: Possibilities, advantages, applications. Bioresource Technology, 2012, 115, 126-135.	4.8	167
168	Atomistic Model for the Polyamide Formation from \hat{l}^2 -Lactam Catalyzed by Candida antarctica Lipase B. ACS Catalysis, 2011, 1, 323-336.	5.5	31
169	Utilization of Glycosyltransferases for the Synthesis of a Densely Packed Hyperbranched Polysaccharide Brush Coating as Artificial Glycocalyx. Biomacromolecules, 2011, 12, 3728-3732.	2.6	27
170	Supramolecular Route to Well-Ordered Metal Nanofoams. ACS Nano, 2011, 5, 6339-6348.	7.3	94
171	On the specific surface area of nanoporous materials. Acta Materialia, 2011, 59, 7488-7497.	3.8	104
172	Effect of <i>Candida antarctica</i> Lipase B Immobilization on the Porous Structure of the Carrier. Macromolecular Bioscience, 2011, 11, 1537-1543.	2.1	17
173	Electrospinning of Poly[acrylonitrile <i> oâ€</i> (glycidyl methacrylate)] Nanofibrous Mats for the Immobilization of <i>Candida Antarctica</i> Lipase B. Macromolecular Chemistry and Physics, 2011, 212, 319-327.	1.1	16
174	Nanoporous Network Channels from Selfâ€Assembled Triblock Copolymer Supramolecules. Macromolecular Rapid Communications, 2011, 32, 366-370.	2.0	37
175	Hierarchical self-assembly of two-length-scale multiblock copolymers. Journal of Physics Condensed Matter, 2011, 23, 284110.	0.7	7
176	Thermus thermophilus Glycoside Hydrolase Family 57 Branching Enzyme. Journal of Biological Chemistry, 2011, 286, 3520-3530.	1.6	88
177	Supramolecular Triblock Copolymer Complexes. ACS Symposium Series, 2010, , 117-129.	0.5	0
178	Immobilization of <i>Candida antarctica</i> lipase B on Polystyrene Nanoparticles. Macromolecular Rapid Communications, 2010, 31, 71-74.	2.0	83
179	Biomimetic Mussel Adhesive Inspired Clickable Anchors Applied to the Functionalization of Fe ₃ O ₄ Nanoparticles. Macromolecular Rapid Communications, 2010, 31, 1608-1615.	2.0	60
180	Formation, topography and reactivity of <i>Candida antarctica</i> lipase B immobilized on silicon surface. Biocatalysis and Biotransformation, 2010, 28, 357-369.	1.1	11

#	Article	lF	CITATIONS
181	Self-Assembly of Supramolecular Triblock Copolymer Complexes. Macromolecules, 2010, 43, 2970-2980.	2.2	29
182	Mechanistic Insight in the Enzymatic Ring-Opening Polymerization of β-Propiolactam. ACS Symposium Series, 2010, , 265-278.	0.5	7
183	Transferases in Polymer Chemistry. Advances in Polymer Science, 2010, , 21-54.	0.4	8
184	Macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins—Versatile immobilization supports for biocatalysts. Journal of Molecular Catalysis B: Enzymatic, 2009, 56, 196-201.	1.8	74
185	Molecular modeling studies of lipase-catalyzed \hat{I}^2 -lactam polymerization. Chemistry Central Journal, 2009, 3, .	2.6	0
186	Nanostructured polystyrene-block-poly(4-vinyl pyridine)(pentadecylphenol) thin films as templates for polypyrrole synthesis. Polymer, 2009, 50, 3617-3625.	1.8	20
187	Surface modification of macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) resins for improved Candida antarctica lipase B immobilization. Reactive and Functional Polymers, 2009, 69, 68-75.	2.0	48
188	Hyperbranched PEI with Various Oligosaccharide Architectures: Synthesis, Characterization, ATP Complexation, and Cellular Uptake Properties. Biomacromolecules, 2009, 10, 1114-1124.	2.6	116
189	Surface Modification of Poly(divinylbenzene) Microspheres via Thiolâ^'Ene Chemistry and Alkyneâ^'Azide Click Reactions. Macromolecules, 2009, 42, 3707-3714.	2.2	192
190	Over-Stabilization of Chemically Modified and Cross-Linked Candida antarctica Lipase B Using Various Epoxides and Diepoxides. Australian Journal of Chemistry, 2009, 62, 799.	0.5	25
191	Enzyme-Catalyzed Ring-Opening Polymerization of Unsubstitutedβ-Lactam. Macromolecular Rapid Communications, 2008, 29, 794-797.	2.0	52
192	Synthesis of Branched Polyglucans by the Tandem Action of Potato Phosphorylase and <i>Deinococcus geothermalis</i> Glycogen Branching Enzyme. Macromolecular Rapid Communications, 2008, 29, 1293-1297.	2.0	59
193	Poly(<i>tert</i> -butyl methacrylate- <i>b</i> -styrene- <i>b</i> -4-vinylpyridine) Triblock Copolymers: Synthesis, Interactions, and Self-Assembly. Macromolecules, 2008, 41, 6393-6399.	2.2	20
194	Synthesis of Dense Poly(acrylic acid) Brushes and Their Interaction with Amine-Functional Silsesquioxane Nanoparticles. Langmuir, 2008, 24, 9421-9429.	1.6	30
195	Novel Materials Based on Enzymatically Synthesized Amylose and Amylopectin. ACS Symposium Series, 2008, , 362-378.	0.5	2
196	Amylose and Amylopectin Hybrid Materials via Enzymatic Pathways. Macromolecular Symposia, 2007, 254, 54-61.	0.4	4
197	Controlling the Size of Magnetic Nanoparticles Using Pluronic Block Copolymer Surfactants. Journal of Physical Chemistry B, 2005, 109, 15-18.	1.2	75
198	Combinatorial Approach To Study Enzyme/Surface Interactions. Langmuir, 2005, 21, 5237-5241.	1.6	42

#	Article	IF	CITATIONS
199	Micellar Aggregates of Amylose-block-polystyrene Rodâ^'Coil Block Copolymers in Water and THF. Macromolecules, 2005, 38, 873-879.	2.2	88
200	One-Step Synthesis of Core(Cr)/Shell(γ-Fe2O3) Nanoparticles. Journal of the American Chemical Society, 2005, 127, 5730-5731.	6.6	43
201	Mixed Self-Assembled Monolayers of Alkanethiolates on Ultrasmooth Gold Do Not Exhibit Contact-Angle Hysteresis. Journal of the American Chemical Society, 2005, 127, 4-5.	6.6	111
202	Microstructure and Crystallization of Rigid-Coil Comblike Polymers and Block Copolymers. , 2005, , .		0
203	Facile Route to Ultraflat SAM-Protected Gold Surfaces by"Amphiphile Splitting― Angewandte Chemie - International Edition, 2004, 43, 520-523.	7.2	52
204	Mixed Ironâ^'Manganese Oxide Nanoparticles. Journal of Physical Chemistry B, 2004, 108, 14876-14883.	1.2	63
205	Activity ofCandida rugosaLipase Immobilized on γ-Fe2O3Magnetic Nanoparticles. Journal of the American Chemical Society, 2003, 125, 1684-1685.	6.6	545
206	Imaging Structured Water and Bound Polysaccharide on Mica Surface at Ambient Temperature. Journal of the American Chemical Society, 2003, 125, 7124-7128.	6.6	55
207	Doping Î ³ -Fe2O3Nanoparticles with Mn(III) Suppresses the Transition to the α-Fe2O3Structure. Journal of the American Chemical Society, 2003, 125, 11470-11471.	6.6	104
208	New Routes to the Synthesis of Amylose-block-polystyrene Rodâ^'Coil Block Copolymers. Biomacromolecules, 2002, 3, 368-373.	2.6	89
209	Carbohydrate Modified Polysiloxanes, 3. Solution Properties of Carbohydrate-Polysiloxane Conjugates in Toluene. Macromolecular Chemistry and Physics, 2001, 202, 3210-3218.	1.1	49
210	Synthesis of Amylose-block-polystyrene Rodâ^'Coil Block Copolymers. Macromolecules, 1997, 30, 7641-7643.	2.2	79
211	Saccharide modified silica particles by enzymatic grafting. Macromolecular Rapid Communications, 1997, 18, 927-938.	2.0	43
212	Starch-degrading enzymes during the induction of CAM in Mesembryanthemum crystallinum. Plant, Cell and Environment, 1993, 16, 531-538.	2.8	50
213	In vitro digestibility study of starch complexed with different guest molecules. Starch/Staerke, 0, , 2100208.	1.1	1