Yuta Maeyoshi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4603916/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator. ACS Applied Materials & Interfaces, 2019, 11, 25833-25843.	8.0	72
2	Effect of organic additives on characteristics of carbon-coated LiCoPO4 synthesized by hydrothermal method. Journal of Power Sources, 2017, 337, 92-99.	7.8	47
3	Fullerene nanowires as a versatile platform for organic electronics. Scientific Reports, 2012, 2, 600.	3.3	42
4	Enhanced cycle stability of LiCoPO 4 by using three-dimensionally ordered macroporous polyimide separator. Journal of Power Sources, 2017, 350, 103-108.	7.8	37
5	Holey reduced graphene oxide/carbon nanotube/LiMn0.7Fe0.3PO4 composite cathode for high-performance lithium batteries. Journal of Power Sources, 2020, 449, 227553.	7.8	23
6	Effect of conductive carbon additives on electrochemical performance of LiCoPO 4. Journal of Power Sources, 2018, 376, 18-25.	7.8	22
7	Semiconducting Cross-Linked Polymer Nanowires Prepared by High-Energy Single-Particle Track Reactions. Journal of Physical Chemistry B, 2012, 116, 12857-12863.	2.6	15
8	Improving Cycling Stability of Vanadium Sulfide (VS ₄) as a Li Battery Cathode Material Using a Localized High-Concentration Carbonate-Based Electrolyte. ACS Applied Energy Materials, 2021, 4, 13627-13635.	5.1	15
9	Highly improved performances of LiMn0.7Fe0.3PO4 cathode with in situ electrochemically reduced graphene oxide. Journal of Alloys and Compounds, 2019, 793, 627-634.	5.5	12
10	A Facile Way To Synthesize Carbon-Coated LiMn _{0.7} Fe _{0.3} PO ₄ /Reduced Graphene Oxide Sandwich-Structured Composite for Lithium-Ion Batteries. ACS Applied Energy Materials, 2019, 2, 1727-1733.	5.1	11
11	Non-flammable super-concentrated polymer electrolyte with "solvated ionic liquid―for lithium-ion batteries. Journal of Power Sources, 2021, 506, 230099.	7.8	11
12	Li-ion conducting glass ceramic (LICGC)/reduced graphene oxide sandwich-like structure composite for high-performance lithium-ion batteries. Journal of Power Sources, 2021, 500, 229976.	7.8	8
13	Stable Lithium Metal Plating/Stripping in a Localized High-Concentration Cyclic Carbonate-Based Electrolyte. Electrochemistry, 2022, 90, 047001-047001.	1.4	5
14	Fabrication of Poly(9,9'-dioctylfluorene)-Based Nano- and Microstructures by Proton Beam Writing. Japanese Journal of Applied Physics, 2012, 51, 045201.	1.5	2
15	Microprocessing of Arched Bridge Structures with Epoxy Resin by Proton Beam Writing. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 43-46.	0.3	2
16	Fabrication of Nanowires Based on Polystyrene Derivatives by Single Particle Nano-Fabrication Technique. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2012, 25, 685-688.	0.3	2
17	Fullerene Nanowires Produced by Single Particle Nanofabrication Technique and Their Photovoltaic Applications. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 193-197.	0.3	2
18	Fabrication of Concave and Convex Structure Array Consisted of Epoxy Long-Nanowires by Light and Heavy Ion Beams Lithography. Transactions of the Materials Research Society of Japan, 2012, 37, 237-240.	0.2	1

Υυτα Μαεγοςηι

#	Article	IF	CITATIONS
19	Sugar nanowires based on cyclodextrin on quartz crystal microbalance for gas sensing with ultra-high sensitivity. Radiation Physics and Chemistry, 2013, 84, 196-199.	2.8	1
20	Evaluation on hybridâ^'electrolyte structure using the liquid electrolyte interlayer containing LiBH4 at Li7La3Zr2O12 Li interface at high operating temperature. Journal of Power Sources, 2020, 478, 228751.	7.8	1
21	Enhancing the Cyclability of VS ₄ Positive Electrode in Carbonateâ€Based Electrolyte using Fluoroethylene Carbonate Additive. Batteries and Supercaps, 2022, 5, .	4.7	1
22	The Photopolymer Science and Technology Award. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2013, 26, 11-14.	0.3	0
23	A Facile Way to Synthesize Carbon-Coated LiMn0.7Fe0.3PO4/Reduced Graphene Oxide Sandwich-Structured Composite for Lithium Ion Batteries. ECS Meeting Abstracts, 2019, , .	0.0	0
24	Effect of Salt Concentration in Sulfolane-Based Electrolyte on Long-Term Li Plating/Stripping Behavior. ECS Meeting Abstracts, 2019, , .	0.0	0
25	Enhancing Cycle Stability of Li/VS4 Batteries with Localized High-Concentration Carbonate-Based Electrolytes. ECS Meeting Abstracts, 2021, MA2021-02, 107-107.	0.0	0
26	Holey Reduced Graphene Oxide/Carbon Nanotube/LiMn _{0.7} Fe _{0.3} PO ₄ Composite Cathode for High-Performance Lithium Batteries. ECS Meeting Abstracts, 2020, MA2020-02, 1121-1121.	0.0	0