
Sandra L Petersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4603893/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Amplifying Voices: Investigating a Cross-Institutional, Mutual Mentoring Program for URM Women in STEM. Innovative Higher Education, 2020, 45, 317-332.	1.5	9
2	Progesterone receptor membrane component 1 inhibits tumor necrosis factor alpha induction of gene expression in neural cells. PLoS ONE, 2019, 14, e0215389.	1.1	10
3	Multi-institutional study of GRE scores as predictors of STEM PhD degree completion: GRE gets a low mark. PLoS ONE, 2018, 13, e0206570.	1.1	45
4	Energy balance affects pulsatile secretion of luteinizing hormone from the adenohypophesis and expression of neurokinin B in the hypothalamus of ovariectomized giltsâ€. Biology of Reproduction, 2018, 99, 433-445.	1.2	9
5	Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin may alter LH release patterns by abolishing sex differences in GABA/glutamate cell number and modifying the transcriptome of the male anteroventral periventricular nucleus. Neuroscience, 2016, 329, 239-253.	1.1	8
6	Drop forming as a basis for scaling up of the in situ coating process. Canadian Journal of Chemical Engineering, 2016, 94, 733-737.	0.9	2
7	Saccharose Inversion and Metastable Zone. Chemical Engineering and Technology, 2015, 38, 1088-1091.	0.9	2
8	Influence of seeding on concentration distribution within pastilles drop formed out of binary melts. Chemical Engineering Science, 2015, 133, 70-74.	1.9	6
9	Microarray analysis of neonatal rat anteroventral periventricular transcriptomes identifies the proapoptotic Cugbp2 gene as sex-specific and regulated by estradiol. Neuroscience, 2015, 303, 312-322.	1.1	12
10	Utilizing melt crystallization fundamentals in the development of a new tabletting technology. Frontiers of Chemical Science and Engineering, 2014, 8, 346-352.	2.3	8
11	Optimized Coating through Phase Separation in Tablets by Melt Crystallization. Chemical Engineering and Technology, 2014, 37, 1369-1375.	0.9	7
12	Application of In Situ Coating on a Two-Compound System. Chemical Engineering and Technology, 2014, 37, 1408-1412.	0.9	8
13	Effect of Particle Shape on Inline Particle Size Measurement Techniques. Chemical Engineering and Technology, 2014, 37, 1721-1728.	0.9	9
14	Influence of Caffeine on the Crystallization Behavior of Sugar. Chemical Engineering and Technology, 2014, 37, 1413-1416.	0.9	3
15	Importance of emulsions in crystallization—applications for fat crystallization. Frontiers of Chemical Science and Engineering, 2013, 7, 43-48.	2.3	1
16	Nonclassical Progesterone Signalling Molecules in the Nervous System. Journal of Neuroendocrinology, 2013, 25, 991-1001.	1.2	61
17	Sexual differentiation of the gonadotropin surge release mechanism: A new role for the canonical Nfl®B signaling pathway. Frontiers in Neuroendocrinology, 2012, 33, 36-44.	2.5	19
18	Aryl hydrocarbon receptor activation in lactotropes and gonadotropes interferes with estradiol-dependent and -independent preprolactin, glycoprotein alpha and luteinizing hormone beta gene expression. Molecular and Cellular Endocrinology, 2011, 333, 151-159.	1.6	31

#	Article	IF	CITATIONS
19	Distribution of mRNAs encoding classical progestin receptor, progesterone membrane components 1 and 2, serpine mRNA binding protein 1, and progestin and ADIPOQ receptor family members 7 and 8 in rat forebrain. Neuroscience, 2011, 172, 55-65.	1.1	89
20	Kisspeptin neurons coâ€express metâ€enkephalin and galanin in the rostral periventricular region of the female mouse hypothalamus. Journal of Comparative Neurology, 2011, 519, 3456-3469.	0.9	63
21	Frequency-Dependent Recruitment of Fast Amino Acid and Slow Neuropeptide Neurotransmitter Release Controls Gonadotropin-Releasing Hormone Neuron Excitability. Journal of Neuroscience, 2011, 31, 2421-2430.	1.7	108
22	Estradiol Acts through Nuclear- and Membrane-Initiated Mechanisms to Maintain a Balance between GABAergic and Glutamatergic Signaling in the Brain: Implications for Hormone Replacement Therapy. Reviews in the Neurosciences, 2010, 21, 363-80.	1.4	16
23	Central role of TRAF-interacting protein in a new model of brain sexual differentiation. Proceedings of the United States of America, 2009, 106, 16692-16697.	3.3	58
24	The gad2 Promoter Is a Transcriptional Target of Estrogen Receptor (ER) Â and ERÂ: A Unifying Hypothesis to Explain Diverse Effects of Estradiol. Journal of Neuroscience, 2009, 29, 8790-8797.	1.7	47
25	The Aryl Hydrocarbon Receptor Pathway and Sexual Differentiation of Neuroendocrine Functions. Endocrinology, 2006, 147, s33-s42.	1.4	44
26	Dual-Phenotype GABA/Glutamate Neurons in Adult Preoptic Area: Sexual Dimorphism and Function. Journal of Neuroscience, 2004, 24, 8097-8105.	1.7	178
27	Estrogen receptor-β in oxytocin and vasopressin neurons of the rat and human hypothalamus: Immunocytochemical and in situ hybridization studies. Journal of Comparative Neurology, 2004, 473, 315-333.	0.9	102
28	Direct and Indirect Regulation of Gonadotropin-Releasing Hormone Neurons by Estradiol1. Biology of Reproduction, 2003, 69, 1771-1778.	1.2	178
29	Increased Concentrations of Radioisotopically-labeled Complementary Ribonucleic Acid Probe, Dextran Sulfate, and Dithiothreitol in the Hybridization Buffer Can Improve Results of In Situ Hybridization Histochemistry. Journal of Histochemistry and Cytochemistry, 2002, 50, 1389-1400.	1.3	32
30	Evidence that GABAergic neurons in the preoptic area of the rat brain are targets of 2,3,7,8-tetrachlorodibenzo-p-dioxin during development Environmental Health Perspectives, 2002, 110, 369-376.	2.8	71
31	The distribution of progestin receptor mRNA in rat brainstem. Gene Expression Patterns, 2002, 1, 151-157.	0.3	40
32	Distribution of mRNAs encoding the arylhydrocarbon receptor, arylhydrocarbon receptor nuclear translocator, and arylhydrocarbon receptor nuclear translocator-2 in the rat brain and brainstem. Journal of Comparative Neurology, 2000, 427, 428-439.	0.9	105
33	Detection of Estrogen Receptor-β Messenger Ribonucleic Acid and 125I-Estrogen Binding Sites in Luteinizing Hormone-Releasing Hormone Neurons of the Rat Brain. Endocrinology, 2000, 141, 3506-3509.	1.4	253
34	Influence of Testosterone on LHRH Release, LHRH mRNA and Proopiomelanocortin mRNA in Male Sheep. Journal of Neuroendocrinology, 1996, 8, 113-121.	1.2	32
35	Localized Changes in LHRH mRNA Levels as Cellular Correlates of the Positive Feedback Effects of Estrogen on LHRH Neurons. American Zoologist, 1993, 33, 255-265.	0.7	20
36	Influence of Food Restriction on Neuropeptide-Y, Proopiomelanocortin, and Luteinizing Hormone-Releasing Hormone Gene Expression in Sheep Hypothalami1. Biology of Reproduction, 1993, 49, 831-839.	1.2	128

Sandra L Petersen

#	Article	IF	CITATIONS
37	Tyrosine hydroxylase and POMC mRNA in the arcuate region are increased by castration and hyperprolactinemia. Molecular Brain Research, 1991, 10, 277-281.	2.5	39
38	Medial Preoptic Microimplants of the Antiestrogen, Keoxifene, Affect Luteinizing Hormone-Releasing Hormone mRNA Levels, Median Eminence Luteinizing Hormone-Releasing Hormone Concentrations and Luteinizing Hormone Release in Ovariectomized, Estrogen-Treated Rats. Journal of Neuroendocrinology, 1989, 1, 279-283.	1.2	72
39	Suppression of spontaneous LH surges in estrogen-treated ovariectomized rats by microimplants of antiestrogens into the preoptic brain. Brain Research, 1989, 484, 279-289.	1.1	118
40	An analysis of serotonin secretion in hypothalamic regions based on 5-hydroxytryptophan accumulation or push-pull perfusion. Effects of mesencephalic raphe or locus coeruleus stimulation and correlated changes in plasma luteinizing hormone. Brain Research, 1989, 495, 9-19.	1.1	19
41	Limited responsiveness of LHRH neurons norepinephrine may account for failure of locus coeruleus or medullary A1 electrical stimulation to increase plasma LH in estrogen-treated ovariectomized rats. Brain Research, 1989, 476, 35-44.	1.1	16
42	Effects ofp-chlorophenylalanine on hypothalamic indoleamine levels and the associated changes which occur in catecholamine dynamics and LH surges in estrogen-treated ovariectomized rats. Brain Research, 1987, 416, 267-276.	1.1	11
43	Perinatal androgen manipulations do not affect feminine behavioral potentials in voles. Physiology and Behavior, 1986, 36, 527-531.	1.0	10
44	Effect of Naloxone and Morphine on LH and Prolactin Release in Androgen-Sterilized Rats. Neuroendocrinology, 1986, 44, 84-88.	1.2	10
45	Detection of Estrogen Receptor-β Messenger Ribonucleic Acid and 125I-Estrogen Binding Sites in Luteinizing Hormone-Releasing Hormone Neurons of the Rat Brain. , 0, .		89