Shuhui Bo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4603886/publications.pdf

Version: 2024-02-01

687363 713466 21 636 13 21 citations h-index g-index papers 21 21 21 458 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Tailoring the chemical structures and nonliear optical properties of julolidinyl-based chromophores by molecular engineering. Dyes and Pigments, 2020, 173, 107876.	3.7	14
2	Organic Dye Nanoparticles with a Special Dâ^Ï∈–A Structure for Photoacoustic Imaging and Photothermal Therapy. ACS Applied Bio Materials, 2020, 3, 5722-5729.	4.6	12
3	Improved electro-optical property by introducing stronger acceptor to thermal stable chromophores using modified julolidine as donor. Dyes and Pigments, 2019, 167, 245-254.	3.7	12
4	Optimizing the molecular structure of 1,1,7,7-tetramethyl julolidine fused furan based chromophores by introducing a heterocycle ring to achieve high electro-optic activity. New Journal of Chemistry, 2019, 43, 15548-15554.	2.8	10
5	Novel nonlinear optical push–pull fluorene dyes chromophore as promising materials for telecommunications. Journal of Materials Science: Materials in Electronics, 2019, 30, 12180-12185.	2.2	24
6	Enhanced electro-optic activity and thermal stability by introducing rigid steric hindrance groups into double-donor chromophore. Dyes and Pigments, 2018, 159, 222-229.	3.7	4
7	Enhanced electro-optic activity of two novel bichromophores which are synthesized by Cu(I) catalyzed click-reaction. Dyes and Pigments, 2017, 139, 756-763.	3.7	9
8	Synthesis and characterization of a novel indoline based nonlinear optical chromophore with excellent electro-optic activity and high thermal stability by modifying the π-conjugated bridges. Journal of Materials Chemistry C, 2017, 5, 5111-5118.	5 . 5	40
9	Synthesis of chromophores with ultrahigh electro-optic activity: Rational combination of the bridge, donor and acceptor groups. Dyes and Pigments, 2017, 136, 182-190.	3.7	18
10	Synthesis and characterization of two novel second-order nonlinear optical chromophores based on julolidine donors with excellent electro-optic activity. RSC Advances, 2016, 6, 99743-99751.	3.6	11
11	A systematic study of the structure–property relationship of a series of nonlinear optical (NLO) julolidinyl-based chromophores with a thieno[3,2-b]thiophene moiety. Journal of Materials Chemistry C, 2015, 3, 370-381.	5.5	41
12	Enhanced electro-optic activity from the triarylaminophenyl-based chromophores by introducing heteroatoms to the donor. Journal of Materials Chemistry C, 2015, 3, 5297-5306.	5. 5	25
13	The important role of the location of the alkoxy group on the thiophene ring in designing efficient organic nonlinear optical materials based on double-donor chromophores. Journal of Materials Chemistry C, 2015, 3, 3913-3921.	5.5	24
14	Synthesis of novel nonlinear optical chromophores: achieving excellent electro-optic activity by introducing benzene derivative isolation groups into the bridge. Journal of Materials Chemistry C, 2015, 3, 11595-11604.	5.5	47
15	A study of two thermostable NLO chromophores with different π-electron bridges using fluorene as the donor. New Journal of Chemistry, 2015, 39, 1038-1044.	2.8	10
16	Donor modification of nonlinear optical chromophores: Synthesis, characterization, and fine-tuning of chromophores' mobility and steric hindrance to achieve ultra large electro-optic coefficients in guest–host electro-optic materials. Dyes and Pigments, 2014, 104, 15-23.	3.7	97
17	Comparison of second-order nonlinear optical chromophores with Dâ€"Ï€â€"A, Dâ€"Aâ€"Ï€â€"A and Dâ€"Dâ€"Ï€architectures: diverse NLO effects and interesting optical behavior. RSC Advances, 2014, 4, 52991-52999.	Eâ € "A 3.6	38
18	Synthesis and optical nonlinear property of Y-type chromophores based on double-donor structures with excellent electro-optic activity. Journal of Materials Chemistry C, 2014, 2, 5124-5132.	5 . 5	62

Ѕниниі Во

#	Article	IF	CITATION
19	Comparison of nonlinear optical chromophores containing different conjugated electron-bridges: the relationship between molecular structure-properties and macroscopic electro-optic activities of materials. RSC Advances, 2014, 4, 49737-49744.	3.6	43
20	Synthesis and characterization of a novel second-order nonlinear optical chromophore based on a new julolidine donor. Physical Chemistry Chemical Physics, 2014, 16, 20209-20215.	2.8	31
21	Nonlinear optical chromophores containing a novel pyrrole-based bridge: optimization of electro-optic activity and thermal stability by modifying the bridge. Journal of Materials Chemistry C, 2014, 2, 7785-7795.	5. 5	64