
Giuseppe Spazzafumo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4603849/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Comparative life cycle assessment of hydrogen-fuelled passenger cars. International Journal of Hydrogen Energy, 2021, 46, 35961-35973.	3.8	64
2	Using harmonised life-cycle indicators to explore the role of hydrogen in the environmental performance of fuel cell electric vehicles. International Journal of Hydrogen Energy, 2020, 45, 25758-25765.	3.8	39
3	Life-cycle performance of hydrogen as an energy management solution in hydropower plants: A case study in Central Italy. International Journal of Hydrogen Energy, 2015, 40, 16660-16672.	3.8	26
4	Energy consumption of a last generation full hybrid vehicle compared with a conventional vehicle in real drive conditions. Energy Procedia, 2018, 148, 289-296.	1.8	26
5	SNG Generation via Power to Gas Technology: Plant Design and Annual Performance Assessment. Applied Sciences (Switzerland), 2020, 10, 8443.	1.3	20
6	Storing renewable energies in a substitute of natural gas. International Journal of Hydrogen Energy, 2016, 41, 19492-19498.	3.8	19
7	Life Cycle Assessment of Substitute Natural Gas production from biomass and electrolytic hydrogen. International Journal of Hydrogen Energy, 2021, 46, 35974-35984.	3.8	19
8	Combined power and hydrogen production from coal. Part B: Comparison between the IGHP and CPH systems. International Journal of Hydrogen Energy, 2008, 33, 4397-4404.	3.8	18
9	Hydrogen energy storage: Hydrogen and oxygen storage subsystems. International Journal of Hydrogen Energy, 1997, 22, 897-902.	3.8	17
10	CPH systems for cogeneration of power and hydrogen from coal. International Journal of Hydrogen Energy, 2006, 31, 693-700.	3.8	17
11	South Patagonia: Wind/hydrogen/coal system with reduced CO2 emissions. International Journal of Hydrogen Energy, 2013, 38, 7599-7604.	3.8	16
12	Cogeneration of power and substitute of natural gas using biomass and electrolytic hydrogen. International Journal of Hydrogen Energy, 2018, 43, 11696-11705.	3.8	16
13	Cogeneration of power and substitute of natural gas using electrolytic hydrogen, biomass and high temperature fuel cells. International Journal of Hydrogen Energy, 2018, 43, 11811-11819.	3.8	12
14	Comparison of different system layouts to generate a substitute of natural gas from biomass and electrolytic hydrogen. International Journal of Hydrogen Energy, 2020, 45, 26166-26178.	3.8	10
15	EU scenarios of renewable coal hydro-gasification for SNG production. Sustainable Energy Technologies and Assessments, 2016, 16, 43-52.	1.7	9
16	Steam power-plants fed by high pressure electrolytic hydrogen. International Journal of Hydrogen Energy, 2004, 29, 547-551.	3.8	7
17	MHD plants: A comparison between two-level and three-level systems. Energy Conversion and Management, 1997, 38, 525-531.	4.4	6
18	A steam cycle with an isothermal expansion: the effect of flowvariation. International Journal of Hydrogen Energy, 1999, 24, 53-57.	3.8	6

#	Article	IF	CITATIONS
19	Heat Recovery from a PtSNG Plant Coupled with Wind Energy. Energies, 2021, 14, 7660.	1.6	6
20	Parametric analysis of a steam cycle with a quasi-isothermal expansion. International Journal of Hydrogen Energy, 2001, 26, 275-279.	3.8	5
21	Energetic and exergetic analysis of an innovative plant for the production of electricity and substitute natural gas. Energy Procedia, 2018, 148, 312-319.	1.8	5
22	From biomass and electrolytic hydrogen to substitute natural gas and power: The issue ofÂintermediate gas storages. International Journal of Hydrogen Energy, 2019, 44, 21045-21054.	3.8	5
23	Impact of hydrogen injection on thermophysical properties and measurement reliability in natural gas networks. E3S Web of Conferences, 2021, 312, 01004.	0.2	4
24	Hydrogen energy storage: Preliminary analysis. International Journal of Hydrogen Energy, 1993, 18, 933-940.	3.8	3
25	A thermodynamic cycle with a quasi-isothermal expansion. International Journal of Hydrogen Energy, 1998, 23, 209-211.	3.8	3
26	ZECOMIX: Performance of alternative lay-outs. International Journal of Hydrogen Energy, 2010, 35, 9845-9850.	3.8	3
27	Cogeneration of power and hydrogen with integrated fuel processor counterpressure steam cycles. International Journal of Hydrogen Energy, 2003, 29, 1147-1147.	3.8	2
28	Pre-feasibility analysis of an energy supply system for Southern Europe: Technical aspects. International Journal of Hydrogen Energy, 1994, 19, 957-963.	3.8	1
29	Life cycle assessment of hybrid passenger electric vehicle. , 2022, , 475-495.		1
30	Characterization of hydrogen in metallic alloys suitable for electrolysis. International Journal of Hydrogen Energy, 2012, 37, 14753-14756.	3.8	0
31	Power to methane. , 2021, , 75-101.		0
32	LIFE-CYCLE PERFORMANCE OF HYDROGEN AS AN ENERGY MANAGEMENT SOLUTION IN HYDROPOWER PLANTS: A CASE STUDY IN CENTRAL ITALY. Alternative Energy and Ecology (ISJAEE), 2019, , 35-51.	0.2	0
33	STORING RENEWABLE ENERGIES IN A SUBSTITUTE OF NATURAL GAS. Alternative Energy and Ecology (ISJAEE), 2019, , 67-75.	0.2	Ο