Laura Martn-Pozo

List of Publications by Citations

Source: https://exaly.com/author-pdf/4603650/laura-martin-pozo-publications-by-citations.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

10 151 5 10 g-index

10 229 5.3 3.46 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
10	Analytical methods for the determination of emerging contaminants in sewage sludge samples. A review. <i>Talanta</i> , 2019 , 192, 508-533	6.2	73
9	Chromatographic Methods for the Determination of Emerging Contaminants in Natural Water and Wastewater Samples: A Review. <i>Critical Reviews in Analytical Chemistry</i> , 2019 , 49, 160-186	5.2	27
8	Common sea urchin (Paracentrotus lividus) and sea cucumber of the genus Holothuria as bioindicators of pollution in the study of chemical contaminants in aquatic media. A revision. <i>Ecological Indicators</i> , 2020 , 113, 106185	5.8	16
7	Analytical methods for the determination of endocrine disrupting chemicals in cosmetics and personal care products: A review. <i>Talanta</i> , 2021 , 234, 122642	6.2	15
6	Determination of endocrine disrupting chemicals in human nails using an alkaline digestion prior to ultra-high performance liquid chromatography-tandem mass spectrometry. <i>Talanta</i> , 2020 , 208, 120429	6.2	11
5	Use of Quick, Easy, Cheap, Effective, Rugged & Safe (QuEChERS) and molecular imprinted polymer followed by gas chromatography with tandem mass spectrometry for the quantitative analysis of polycyclic aromatic hydrocarbons (PAH4) in complex health supplements. <i>Journal of Food</i>	4.1	4
4	Determination of ultraviolet filters in human nails using an acid sample digestion followed by ultra-high performance liquid chromatography-mass spectrometry analysis. <i>Chemosphere</i> , 2021 , 273, 128603	8.4	3
3	Analysis of Phlebodium decumanum Fronds by High-Performance Liquid Chromatography by Ultraviolet-Visible and Quadrupole Time-of-Flight Tandem Mass Spectrometry (HPLCIJVIJISQTOFINS/MS). <i>Analytical Letters</i> , 2019 , 52, 2107-2132	2.2	1
2	Ultra-high performance liquid chromatography tandem mass spectrometry analysis of UV filters in marine mussels (Mytilus galloprovinciallis) from the southern coast of Spain. <i>Microchemical Journal</i> , 2021 , 171, 106800	4.8	1
1	New method for the determination of endocrine disrupting chemicals in Mediterranean mussel (Mytilus galloprovincialis) using ultra-high performance liquid chromatographyllandem mass spectrometry. Microchemical Journal 2022, 175, 107102	4.8	О