Michael Bizimis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4603347/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Recycling oceanic crust: Quantitative constraints. Geochemistry, Geophysics, Geosystems, 2003, 4, .	1.0	389
2	Determination of Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb in seawater using high resolution magnetic sector inductively coupled mass spectrometry (HR-ICP-MS). Analytica Chimica Acta, 2010, 665, 200-207.	2.6	271
3	Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chemical Geology, 2000, 165, 67-85.	1.4	217
4	Near mantle solidus trace element partitioning at pressures up to 3.4 GPa. Geochemistry, Geophysics, Geosystems, 2002, 3, 1-23.	1.0	199
5	The brevity of carbonatite sources in the mantle: evidence from Hf isotopes. Contributions To Mineralogy and Petrology, 2003, 145, 281-300.	1.2	180
6	Ancient recycled mantle lithosphere in the Hawaiian plume: Osmium–Hafnium isotopic evidence from peridotite mantle xenoliths. Earth and Planetary Science Letters, 2007, 257, 259-273.	1.8	137
7	Iron isotope tracing of mantle heterogeneity within the source regions of oceanic basalts. Earth and Planetary Science Letters, 2014, 404, 396-407.	1.8	134
8	Hf–Nd isotope decoupling in the oceanic lithosphere: constraints from spinel peridotites from Oahu, Hawaiiâ~†. Earth and Planetary Science Letters, 2004, 217, 43-58.	1.8	108
9	Deccan plume, lithosphere rifting, and volcanism in Kutch, India. Earth and Planetary Science Letters, 2009, 277, 101-111.	1.8	93
10	Sewage spills are a major source of titanium dioxide engineered (nano)-particle release into the environment. Environmental Science: Nano, 2019, 6, 763-777.	2.2	92
11	Hf-Nd-Sr isotope systematics of garnet pyroxenites from Salt Lake Crater, Oahu, Hawaii: Evidence for a depleted component in Hawaiian volcanism. Geochimica Et Cosmochimica Acta, 2005, 69, 2629-2646.	1.6	85
12	Origin of depleted basalts during subduction initiation and early development of the Izu-Bonin-Mariana island arc: Evidence from IODP expedition 351 site U1438, Amami-Sankaku basin. Geochimica Et Cosmochimica Acta, 2018, 229, 85-111.	1.6	83
13	Water disequilibrium in olivines from Hawaiian peridotites: Recent metasomatism, H diffusion and magma ascent rates. Geochimica Et Cosmochimica Acta, 2015, 154, 98-117.	1.6	74
14	Supercontinental inheritance and its influence on supercontinental breakup: The <scp>C</scp> entral <scp>A</scp> tlantic <scp>M</scp> agmatic <scp>P</scp> rovince and the breakup of <scp>P</scp> angea. Geochemistry, Geophysics, Geosystems, 2015, 16, 3532-3554.	1.0	68
15	Lu?Hf and geochemical systematics of recycled ancient oceanic crust: evidence from Roberts Victor eclogites. Contributions To Mineralogy and Petrology, 2005, 148, 707-720.	1.2	66
16	Volcanoes of the passive margin: The youngest magmatic event in eastern North America. Geology, 2014, 42, 483-486.	2.0	62
17	Sampling the volatile-rich transition zone beneath Bermuda. Nature, 2019, 569, 398-403.	13.7	60
18	Kimberlite petrogenesis: Insights from clinopyroxene-melt partitioning experiments at 6 GPa in the	1.6	59

⁸ CaO-MgO-Al2O3-SiO2-CO2 system. Geochimica Et Cosmochimica Acta, 2005, 69, 2829-2845.

2

#	Article	IF	CITATIONS
19	Water in Hawaiian garnet pyroxenites: Implications for water heterogeneity in the mantle. Chemical Geology, 2015, 397, 61-75.	1.4	59
20	Redox controls on Ni–Fe–PGE mineralization and Re/Os fractionation during serpentinization of abyssal peridotite. Geochimica Et Cosmochimica Acta, 2015, 150, 11-25.	1.6	56
21	Lead isotopic fingerprinting of aerosols to characterize the sources of atmospheric lead in an industrial city of India. Atmospheric Environment, 2016, 129, 27-33.	1.9	55
22	The hottest lavas of the Phanerozoic and the survival of deep Archaean reservoirs. Nature Geoscience, 2017, 10, 451-456.	5.4	54
23	Onset of the Indian Ocean isotopic signature in the Philippine Sea Plate: Hf and Pb isotope evidence from Early Cretaceous terranes. Earth and Planetary Science Letters, 2008, 268, 255-267.	1.8	53
24	Hafnium–neodymium isotope systematics of the 2.7Ga Gadwal greenstone terrane, Eastern Dharwar craton, India: Implications for the evolution of the Archean depleted mantle. Geochimica Et Cosmochimica Acta, 2014, 127, 10-24.	1.6	53
25	Water in <scp>H</scp> awaiian peridotite minerals: A case for a dry metasomatized oceanic mantle lithosphere. Geochemistry, Geophysics, Geosystems, 2015, 16, 1211-1232.	1.0	51
26	Isotope and trace element evidence for depleted lithosphere in the source of enriched Ko'olau basalts. Contributions To Mineralogy and Petrology, 2006, 151, 297-312.	1.2	48
27	Implications of Eocene-age Philippine Sea and forearc basalts for initiation and early history of the Izu-Bonin-Mariana arc. Geochimica Et Cosmochimica Acta, 2018, 228, 136-156.	1.6	48
28	Hawaiian mantle xenoliths and magmas: Composition and thermal character of the lithosphere. American Mineralogist, 2005, 90, 871-887.	0.9	44
29	Tracing mercury seawater vs. atmospheric inputs in a pristine SE USA salt marsh system: Mercury isotope evidence. Chemical Geology, 2013, 336, 50-61.	1.4	44
30	Seawater-derived rare earth element addition to abyssal peridotites during serpentinization. Lithos, 2016, 248-251, 432-454.	0.6	44
31	The composition and distribution of the rejuvenated component across the Hawaiian plume: Hfâ€Ndâ€Srâ€Pb isotope systematics of Kaula lavas and pyroxenite xenoliths. Geochemistry, Geophysics, Geosystems, 2013, 14, 4458-4478.	1.0	43
32	Ancient helium and tungsten isotopic signatures preserved in mantle domains least modified by crustal recycling. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30993-31001.	3.3	41
33	A radiogenic Os component in the oceanic lithosphere? Constraints from Hawaiian pyroxenite xenoliths. Geochimica Et Cosmochimica Acta, 2011, 75, 4899-4916.	1.6	40
34	Recycled crust in the Galápagos Plume source at 70 Ma: Implications for plume evolution. Earth and Planetary Science Letters, 2015, 425, 268-277.	1.8	38
35	Hf–Nd isotope decoupling in bulk abyssal peridotites due to serpentinization. Chemical Geology, 2016, 440, 60-72.	1.4	38
36	Mg isotope systematics during magmatic processes: Inter-mineral fractionation in mafic to ultramafic Hawaiian xenoliths. Geochimica Et Cosmochimica Acta, 2018, 226, 192-205.	1.6	37

#	Article	IF	CITATIONS
37	Constraints on the mantle mineralogy of an ultra-slow ridge: Hafnium isotopes in abyssal peridotites and basalts from the 9–25°E Southwest Indian Ridge. Earth and Planetary Science Letters, 2015, 410, 42-53.	1.8	35
38	Record of massive upwellings from the Pacific large low shear velocity province. Nature Communications, 2016, 7, 13309.	5.8	34
39	Re–Os and Lu–Hf isotopic constraints on the formation and age of mantle pyroxenites from the Bohemian Massif. Lithos, 2016, 256-257, 197-210.	0.6	31
40	Evolution of ca. 2.5†Ga Dongargarh volcano-sedimentary Supergroup, Bastar craton, Central India: Constraints from zircon U-Pb geochronology, bulk-rock geochemistry and Hf-Nd isotope systematics. Earth-Science Reviews, 2019, 190, 273-309.	4.0	30
41	Petrogenesis of ultramafics in the Neoarchean Veligallu greenstone terrane, eastern Dharwar craton, India: Constraints from bulk-rock geochemistry and Lu-Hf isotopes. Precambrian Research, 2016, 285, 186-201.	1.2	27
42	Uâ€₽b zircon constraints on the age and provenance of the Rocas Verdes basin fill, Tierra del Fuego, Argentina. Geochemistry, Geophysics, Geosystems, 2009, 10, .	1.0	26
43	Rift–plume interaction reveals multiple generations of recycled oceanic crust in Azores lavas. Geochimica Et Cosmochimica Acta, 2017, 218, 132-152.	1.6	26
44	Geochemistry of sulfides in Hawaiian garnet pyroxenite xenoliths: Implications for highly siderophile elements in the oceanic mantle. Chemical Geology, 2010, 273, 180-192.	1.4	25
45	Mesoproterozoic and Paleoproterozoic subcontinental lithospheric mantle domains beneath southern Patagonia: Isotopic evidence for its connection to Africa and Antarctica. Geology, 2015, 43, 39-42.	2.0	25
46	Emerging airborne contaminants in India: Platinum Group Elements from catalytic converters in motor vehicles. Applied Geochemistry, 2016, 75, 100-106.	1.4	25
47	Postâ€rift magmatic evolution of the eastern <scp>N</scp> orth <scp>A</scp> merican "passiveâ€aggressive―margin. Geochemistry, Geophysics, Geosystems, 2017, 18, 3-22.	1.0	25
48	Petrogenesis of basalt–high-Mg andesite–adakite in the Neoarchean Veligallu greenstone terrane: Geochemical evidence for a rifted back-arc crust in the eastern Dharwar craton, India. Precambrian Research, 2015, 258, 260-277.	1.2	22
49	Retrospective study of methylmercury and other metal(loid)s in Madagascar unpolished rice (Oryza) Tj ETQq1	1 0.784314 3.7	rgBT /Overio
50	Longâ€Lived Source Heterogeneities in the Galapagos Mantle Plume. Geochemistry, Geophysics, Geosystems, 2018, 19, 2764-2779.	1.0	19
51	Shelf Inputs and Lateral Transport of Mn, Co, and Ce in the Western North Pacific Ocean. Frontiers in Marine Science, 2019, 6, .	1.2	17
52	Origin of diverse geochemical signatures in igneous rocks from the West Philippine Basin: Implications for tectonic models. Geophysical Monograph Series, 2006, , 287-303.	0.1	17
53	Geochemical and Os–Hf–Nd–Sr Isotopic Characterization of North Patagonian Mantle Xenoliths: Implications for Extensive Melt Extraction and Percolation Processes. Journal of Petrology, 2016, 57, 685-715.	1.1	16
54	Age and geochemistry of volcanic clasts from DSDP Site 445, Daito Ridge and relationship to Minami-Daito Basin and early Izu-Bonin arc magmatism. Journal of Asian Earth Sciences, 2013, 70-71, 193-208.	1.0	15

#	Article	IF	CITATIONS
55	â^1⁄42.1 Ga intraoceanic magmatism in the Central India Tectonic Zone: Constraints from the petrogenesis of ferropicrites in the Mahakoshal supracrustal belt. Precambrian Research, 2017, 302, 1-17.	1.2	14
56	An aeolian sediment reconstruction of regional wind intensity and links to larger scale climate variability since the last deglaciation from the east coast of southern Africa. Global and Planetary Change, 2017, 156, 59-67.	1.6	14
57	Fragments of Metasomatized Forearc: Origin and Implications of Mafic and Ultramafic Xenoliths From Kharchinsky Volcano, Kamchatka. Geochemistry, Geophysics, Geosystems, 2019, 20, 4426-4456.	1.0	14
58	Transition-Metal Ion Exchange Using Poly(ethylene glycol) Oligomers as Solvents. Chemistry of Materials, 2010, 22, 330-337.	3.2	13
59	Supraglacial microbes use young carbon and not aged cryoconite carbon. Organic Geochemistry, 2018, 118, 63-72.	0.9	13
60	Lead Isotope Evidence for Enhanced Anthropogenic Particle Transport to the Himalayas during Summer Months. Environmental Science & Technology, 2021, 55, 13697-13708.	4.6	12
61	Sources vs processes: Unraveling the compositional heterogeneity of rejuvenated-type Hawaiian magmas. Earth and Planetary Science Letters, 2019, 514, 119-129.	1.8	11
62	Effects of melting, subduction-related metasomatism, and sub-solidus equilibration on the distribution of water contents in the mantle beneath the Rio Grande Rift. Geochimica Et Cosmochimica Acta, 2019, 266, 351-381.	1.6	11
63	Biomass-Derived Provenance Dominates Glacial Surface Organic Carbon in the Western Himalaya. Environmental Science & Technology, 2020, 54, 8612-8621.	4.6	11
64	Metasomatism and Hydration of the Oceanic Lithosphere: a Case Study of Peridotite Xenoliths from Samoa. Journal of Petrology, 2020, 61, .	1.1	11
65	Low-tide rainfall effects on metal content of suspended sediment in the Sacramento-San Joaquin Delta. Continental Shelf Research, 2013, 56, 39-55.	0.9	9
66	"Missing links―for the long-lived Macdonald and Arago hotspots, South Pacific Ocean. Geology, 2021, 49, 541-544.	2.0	9
67	Sodalite ion exchange in polyethylene oxide oligomer solvents. Journal of Materials Chemistry, 2007, 17, 4530.	6.7	8
68	Mantle xenoliths from Szentbékálla, Balaton: Geochemical and petrological constraints on the evolution of the lithospheric mantle underneath Pannonian Basin, Hungary. Lithos, 2017, 276, 30-44.	0.6	8
69	Deepwater Expansion and Enhanced Remineralization in the Eastern Equatorial Pacific During the Last Glacial Maximum. Paleoceanography and Paleoclimatology, 2018, 33, 563-578.	1.3	8
70	Volcaniclastic sandstones record the influence of subducted Pacific MORB on magmatism at the early Izu-Bonin arc. Geochimica Et Cosmochimica Acta, 2021, 296, 170-188.	1.6	8
71	Magmatism at the Eurasian–North American modern plate boundary: Constraints from alkaline volcanism in the Chersky Belt (Yakutia). Lithos, 2011, 125, 825-835.	0.6	7
72	Sr, Nd, Hf and Pb isotope systematics of postshield-stage lavas at Kahoolawe, Hawaii. Chemical Geology, 2013, 360-361, 159-172.	1.4	7

#	Article	IF	CITATIONS
73	Mass Independent Fractionation of Mercury Isotopes as Source Tracers in Sediments. Procedia Earth and Planetary Science, 2015, 13, 151-157.	0.6	7
74	Dust provenance and its role as a potential fertilizing agent for the Okavango Delta, Botswana. Earth Surface Processes and Landforms, 2020, 45, 1705-1716.	1.2	7
75	Enrichments of Metals, Including Methylmercury, in Sewage Spills in South Carolina, USA. Journal of Environmental Quality, 2018, 47, 1258-1266.	1.0	6
76	Salt marsh sediment and metal fluxes in response to rainfall. Limnology & Oceanography Fluids & Environments, 2012, 2, 54-66.	1.7	5
77	lsotopic Characteristics of Neogeneâ€Quaternary Tephra From IODP Site U1438: A Record of Explosive Volcanic Activity in the Kyushuâ€Ryukyu Arc. Geochemistry, Geophysics, Geosystems, 2019, 20, 2318-2333.	1.0	5
78	Assessing Origins of Endâ€īriassic Tholeiites From Eastern North America Using Hafnium Isotopes. Geochemistry, Geophysics, Geosystems, 2020, 21, e2020GC008999.	1.0	5
79	Origins of Os-isotope and platinum-group element compositions of metasomatized peridotite and cumulate pyroxenite xenoliths from Kharchinsky Volcano, Kamchatka. Geochimica Et Cosmochimica Acta, 2021, 299, 130-150.	1.6	4
80	Rare earth element uptake during olivine/water hydrothermal interaction. Lithos, 2019, 332-333, 147-161.	0.6	3
81	A Sediment Trap Evaluation of B/Ca as a Carbonate System Proxy in Asymbiotic and Nondinoflagellate Hosting Planktonic Foraminifera. Paleoceanography and Paleoclimatology, 2020, 35, e2019PA003682.	1.3	3
82	Distinguishing Volcanic Contributions to the Overlapping Samoan and Cook-Austral Hotspot Tracks. Journal of Petrology, 2022, 63, .	1.1	3
83	Response to the comment by M. Lustrino on "High-pressure melting experiments on garnet clinopyroxenite and the alkalic–tholeiitic transition in ocean-island basalts―by Keshav et al. [Earth Planet. Sci. Lett. 223, 365–379 (2004)]. Earth and Planetary Science Letters, 2006, 241, 997-999.	1.8	1
84	Carbonatite Versus Silicate Melt Metasomatism Impacts Grain Scale 87 Sr/ 86 Sr and 143 Nd/ 144 Nd Heterogeneity in Polynesian Mantle Peridotite Xenoliths. Geochemistry, Geophysics, Geosystems, 2021, 22, e2021GC009749.	1.0	1
85	Neodymium Isotopes. Encyclopedia of Earth Sciences Series, 2018, , 967-973.	0.1	1
86	Neodymium Isotopes. Encyclopedia of Earth Sciences Series, 2016, , 1-6.	0.1	0