Bin Han

List of Publications by Year

 in descending orderSource: https:/|exaly.com/author-pdf/4602908/publications.pdf
Version: 2024-02-01

Analysis and Convergence of Hermite Subdivision Schemes. Foundations of Computational
Mathematics, 2023, 23, 165-218.

Multivariate quasi-tight framelets with high balancing orders derived from any compactly supported
Multivariate quasi-tight framelets with high balancing orders derived from
refinable vector functions. Science China Mathematics, 2022, 65, 81-110.

A high order compact finite difference scheme for elliptic interface problems with discontinuous and high-contrast coefficients. Applied Mathematics and Computation, 2022, $431,127314$.
2.2
1.7

4

Compactly supported quasi-tight multiframelets with high balancing orders and compact framelet
transforms. Applied and Computational Harmonic Analysis, 2021, 51, 295-332.
2.2

Wavelets on intervals derived from arbitrary compactly supported biorthogonal multiwavelets.
Applied and Computational Harmonic Analysis, 2021, 53, 270-331.
2.2

Dirac assisted tree method for 1D heterogeneous Helmholtz equations with arbitrary variable wave numbers. Computers and Mathematics With Applications, 2021, 97, 416-438.
2.7

Sixth order compact finite difference schemes for Poisson interface problems with singular sources.
Sixth order compact finite difference schemes for Poisson interface
Computers and Mathematics With Applications, 2021, 99, 2-25.
$2.7 \quad 16$

8 Numerical solution of the viscous Burgersâ $€^{\text {TM }}$ equation using Localized Differential Quadrature method. Partial Differential Equations in Applied Mathematics, 2021, 4, 100044.

Quasi-tight framelets with high vanishing moments derived from arbitrary refinable functions.
Applied and Computational Harmonic Analysis, 2020, 49, 123-151.

Generalized matrix spectral factorization and quasi-tight framelets with a minimum number of generators. Mathematics of Computation, 2020, 89, 2867-2911.
2.1

6
Gibbs Phenomenon of Framelet Expansions and Quasi-projection Approximation. Journal of Fourier Analysis and Applications, 2019, 25, 2923-2956.

Directional compactly supported box spline tight framelets with simple geometric structure. Applied
12 Mathematics Letters, 2019, 91, 213-219.
$2.7 \quad 8$

Derivative-orthogonal Riesz wavelets in Sobolev spaces with applications to differential equations. Applied and Computational Harmonic Analysis, 2019, 47, 759-794.

Construction of wavelets and framelets on a bounded interval. Analysis and Applications, 2018, 16, 807-849.

IMAGE INPAINTING FROM PARTIAL NOISY DATA BY DIRECTIONAL COMPLEX TIGHT FRAMELETS. ANZIAM Journal, 2017, 58, 247-255.

Biorthogonal multiwavelets on the interval for numerical solutions of Burgersâ $€^{T M}$ equation. Journal of Computational and Applied Mathematics, 2017, 317, 510-534.

Robustness properties of dimensionality reduction with Gaussian random matrices. Science China Mathematics, 2017, 60, 1753-1778.

\#	Article	IF	Citations
37	Symmetric tight framelet filter banks with three high-pass filters. Applied and Computational Harmonic Analysis, 2014, 37, 140-161.	2.2	23
38	Algorithm for constructing symmetric dual framelet filter banks. Mathematics of Computation, 2014, 84, 767-801.	2.1	23
39	Matrix splitting with symmetry and symmetric tight framelet filter banks with two high-pass filters. Applied and Computational Harmonic Analysis, 2013, 35, 200-227.	2.2	30
40	Properties of Discrete Framelet Transforms. Mathematical Modelling of Natural Phenomena, 2013, 8, 18-47.	2.4	43
41	Algorithms for matrix extension and orthogonal wavelet filter banks over algebraic number fields. Mathematics of Computation, 2012, 82, 459-490.	2.1	18
42	A dual-chain approach for bottomâ€"up construction of wavelet filters with any integer dilation. Applied and Computational Harmonic Analysis, 2012, 33, 204-225.	2.2	14
43	Nonhomogeneous wavelet systems in high dimensions. Applied and Computational Harmonic Analysis, 2012, 32, 169-196.	2.2	79
44	Symmetric orthogonal filters and wavelets with linear-phase moments. Journal of Computational and Applied Mathematics, 2011, 236, 482-503.	2.0	27
45	Symmetric orthonormal complex wavelets with masks of arbitrarily high linear-phase moments and sum rules. Advances in Computational Mathematics, 2010, 32, 209-237.	1.6	33
46	Pairs of frequency-based nonhomogeneous dual wavelet frames in the distribution space. Applied and Computational Harmonic Analysis, 2010, 29, 330-353.	2.2	68
47	Matrix Extension with Symmetry and Its Application to Symmetric Orthonormal Multiwavelets. SIAM Journal on Mathematical Analysis, 2010, 42, 2297-2317.	1.9	29
48	Analysis and Construction of Multivariate Interpolating Refinable Function Vectors. Acta Applicandae Mathematicae, 2009, 107, 143-171.	1.0	17
49	Dual multiwavelet frames with high balancing order and compact fast frame transform. Applied and Computational Harmonic Analysis, 2009, 26, 14-42.	2.2	64
50	Matrix Extension with Symmetry andÂApplications toÂSymmetric Orthonormal Complex M-wavelets. Journal of Fourier Analysis and Applications, 2009, 15, 684-705.	1.0	37
51	Dual Wavelet Frames and Riesz Bases in Sobolev Spaces. Constructive Approximation, 2009, 29, 369-406.	3.0	77
52	The structure of balanced multivariate biorthogonal multiwavelets and dual multiframelets. Mathematics of Computation, 2009, 79, 917-951.	2.1	26
53	Wavelet bi-frames with few generators from multivariate refinable functions. Applied and Computational Harmonic Analysis, 2008, 25, 407-414.	2.2	61
54	Refinable Functions and Cascade Algorithms in Weighted Spaces with HÃ $\boldsymbol{\sigma}$ Ider Continuous Masks. SIAM Journal on Mathematical Analysis, 2008, 40, 70-102.	1.9	39

Analysis of optimal bivariate symmetric refinable Hermite interpolants. Communications on Pure and
61 Symmetric MRA tight wavelet frames with three generators and high vanishing moments. Applied and Computational Harmonic Analysis, 2005, 18, 67-93.$2.2 \quad 63$
Splitting a Matrix of Laurent Polynomials with Symmetry and itsApplication to Symmetric Framelet Filter Banks. SIAM Journal on Matrix Analysis and Applications, 2004, 26, 97-124.$1.4 \quad 43$
63 Noninterpolatory Hermite subdivision schemes. Mathematics of Computation, 2004, 74, 1345-1368. 2.1 34
64 Pairs of Dual Wavelet Frames from Any Two Refinable Functions. Constructive Approximation, 2004, 20, 325-352.
A hybrid quantization scheme for image compression. Image and Vision Computing, 2004, 22, 203-213.4.57

| 4.5 | 7 |
| :--- | :--- |Vector cascade algorithms and refinable function vectors in Sobolev spaces. Journal of

Approximation Theory, 2003, 124, 44-88.Approximation Theory, 2003, 124, 44-88.
0.867 Compactly supported tight wavelet frames and orthonormal wavelets of exponential decay with a2.098general dilation matrix. Journal of Computational and Applied Mathematics, 2003, 155, 43-67.Framelets: MRA-based constructions of wavelet frames. Applied and Computational Harmonic Analysis,2003, 14, 1-46.

Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments. Advances in 1.6 43
76

Computational Mathematics, 2000, 13, 131-165.

1.6

43

77	Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support. SIAM Journal on Mathematical Analysis, 2000, 31, 274-304.	1.9	59
78	Symmetric orthonormal scaling functions and wavelets with dilation factor 4. Advances in Computational Mathematics, 1998, 8, 221-247.	1.6	58
79	Multivariate Refinement Equations and Convergence of Subdivision Schemes. SIAM Journal on Mathematical Analysis, 1998, 29, 1177-1199.	1.9	16
80	An improved lattice vector quantization scheme for wavelet compression. IEEE Transactions on Signal Processing, 1998, 46, 239-243.	5.3	30

