Britta Schmalz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/460284/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing effects of land use and land cover changes on hydrological processes and sediment yield in the Xunwu River watershed, Jiangxi Province, China. Frontiers of Earth Science, 2022, 16, 819-833.	0.9	2
2	Assessment of wavelet-SVR and wavelet-GP models in predicting the groundwater level using areal precipitation and consumption data. Hydrological Sciences Journal, 2022, 67, 1026-1039.	1.2	4
3	Low Flow and Drought in a German Low Mountain Range Basin. Water (Switzerland), 2021, 13, 316.	1.2	10
4	A Systematic Analysis of the Interaction between Rain-on-Grid-Simulations and Spatial Resolution in 2D Hydrodynamic Modeling. Water (Switzerland), 2021, 13, 2346.	1.2	16
5	Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring. Land, 2021, 10, 1279.	1.2	5
6	Flood hazard analysis in small catchments: Comparison of hydrological and hydrodynamic approaches by the use of direct rainfall. Journal of Flood Risk Management, 2020, 13, e12639.	1.6	45
7	Comparison of Baseflow Separation Methods in the German Low Mountain Range. Water (Switzerland), 2020, 12, 1740.	1.2	20
8	Projected changes in climate and hydrological regimes of the Western Siberian lowlands. Environmental Earth Sciences, 2019, 78, 1.	1.3	6
9	Improved structure of vertical flow velocity distribution in natural rivers based on mean vertical profile velocity and relative water depth. Hydrology Research, 2018, 49, 878-892.	1.1	2
10	Modelling of hydrological processes in snowmelt-governed permafrost-free catchments of the Western Siberian lowlands. International Journal of Hydrology Science and Technology, 2018, 8, 289.	0.2	0
11	Modelling of hydrological processes in snowmelt-governed permafrost-free catchments of the Western Siberian Lowlands. International Journal of Hydrology Science and Technology, 2018, 1, 1.	0.2	1
12	Application of modified Manning formula in the determination of vertical profile velocity in natural rivers. Hydrology Research, 2017, 48, 133-146.	1.1	5
13	Seasonality of Roughness - the Indicator of Annual River Flow Resistance Condition in a Lowland Catchment. Water Resources Management, 2017, 31, 3299-3312.	1.9	15
14	Evaluation of Land Use, Land Management and Soil Conservation Strategies to Reduce Non-Point Source Pollution Loads in the Three Gorges Region, China. Environmental Management, 2016, 58, 906-921.	1.2	52
15	Water-related ecosystem services in Western Siberian lowland basins—Analysing and mapping spatial and seasonal effects on regulating services based on ecohydrological modelling results. Ecological Indicators, 2016, 71, 55-65.	2.6	56
16	Field data-based implementation of land management and terraces on the catchment scale for an eco-hydrological modelling approach in the Three Gorges Region, China. Agricultural Water Management, 2016, 175, 43-60.	2.4	15
17	A new model linking macroinvertebrate assemblages to habitat composition in rivers: development, sensitivity and univariate application. Fundamental and Applied Limnology, 2015, 186, 117-133.	0.4	12
18	Simulation, quantification and comparison of in-channel and floodplain sediment processes in a lowland area – A case study of the Upper Stör catchment in northern Germany. Ecological Indicators, 2015, 57, 118-127.	2.6	9

BRITTA SCHMALZ

#	Article	IF	CITATIONS
19	An attack on two fronts: predicting how changes in land use and climate affect the distribution of stream macroinvertebrates. Freshwater Biology, 2015, 60, 1443-1458.	1.2	66
20	Water-Related Ecosystem Services – The Case Study of Regulating Ecosystem Services in the Kielstau Basin, Germany. , 2015, , 215-232.		1
21	Impacts of land use changes on hydrological components and macroinvertebrate distributions in the Poyang lake area. Ecohydrology, 2015, 8, 1119-1136.	1.1	31
22	Temporal variability of nitrogen and phosphorus concentrations in a German catchment: water sampling implication. Revista Brasileira De Engenharia Agricola E Ambiental, 2014, 18, 811-818.	0.4	0
23	Modeling daily chlorophyll a dynamics in a German lowland river using artificial neural networks and multiple linear regression approaches. Limnology, 2014, 15, 47-56.	0.8	38
24	Integrating catchment properties in small scale species distribution models of stream macroinvertebrates. Ecological Modelling, 2014, 277, 77-86.	1.2	70
25	Simulation and comparison of stream power in-channel and on the floodplain in a German lowland area. Journal of Hydrology and Hydromechanics, 2014, 62, 133-144.	0.7	16
26	Application of a hydrological-hydraulic modelling cascade in lowlands for investigating water and sediment fluxes in catchment, channel and reach. Journal of Hydrology and Hydromechanics, 2013, 61, 334-346.	0.7	28
27	Development and testing of a phytoplankton index of biotic integrity (P-IBI) for a German lowland river. Ecological Indicators, 2012, 13, 158-167.	2.6	89
28	Modelling of riverine ecosystems by integrating models: conceptual approach, a case study and research agenda. Journal of Biogeography, 2012, 39, 2253-2263.	1.4	52
29	Accuracy, reproducibility and sensitivity of acoustic Doppler technology for velocity and discharge measurements in medium-sized rivers. Hydrological Sciences Journal, 2012, 57, 1626-1641.	1.2	10
30	Assessing the spatial and temporal variations of water quality in lowland areas, Northern Germany. Journal of Hydrology, 2012, 438-439, 137-147.	2.3	44
31	A comparison of phytoplankton assemblages generated by two sampling protocols in a German lowland catchment. Annales De Limnologie, 2011, 47, 313-323.	0.6	11
32	The impact of agricultural Best Management Practices on water quality in a North German lowland catchment. Environmental Monitoring and Assessment, 2011, 183, 351-379.	1.3	136
33	Distribution of phytoplankton in a German lowland river in relation to environmental factors. Journal of Plankton Research, 2011, 33, 807-820.	0.8	83
34	Incorporating landscape depressions and tile drainages of a northern German lowland catchment into a semiâ€distributed model. Hydrological Processes, 2010, 24, 1472-1486.	1.1	71
35	Modelling point and diffuse source pollution of nitrate in a rural lowland catchment using the SWAT model. Agricultural Water Management, 2010, 97, 317-325.	2.4	118
36	Variability of water quality in a riparian wetland with interacting shallow groundwater and surface water. Journal of Plant Nutrition and Soil Science, 2009, 172, 757-768.	1.1	11

BRITTA SCHMALZ

#	Article	IF	CITATIONS
37	Modelling hydrological processes in mesoscale lowland river basins with SWAT—capabilities and challenges. Hydrological Sciences Journal, 2008, 53, 989-1000.	1.2	46
38	ANALYSIS OF UNSATURATED WATER FLOW IN A LARGE SAND TANK. Soil Science, 2003, 168, 3-14.	0.9	12
39	Analyses of soil water content variations and GPR attribute distributions. Journal of Hydrology, 2002, 267, 217-226.	2.3	49
40	Modelling spatial distribution of surface runoff and sediment yield in a Chinese river basin without continuous sediment monitoring. Hydrological Sciences Journal, 0, , 1-24.	1.2	7
41	Impact of Land Use on Stream Water Quality in the German Low Mountain Range Basin Gersprenz. Landscape Online, 0, 72, 1-17.	0.0	12
42	Preface: Innovative monitoring techniques and modelling approaches for analysing hydrological processes in small basins. Advances in Geosciences, 0, 48, 49-51.	12.0	1