Bong Hoon Kim

List of Publications by Citations

Source: https://exaly.com/author-pdf/4602557/bong-hoon-kim-publications-by-citations.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

75
papers
6,021
citations
40
p-index
g-index

83
ext. papers
6,978
ext. citations
14.7
avg, IF
L-index

#	Paper	IF	Citations
75	Waterproof AlinGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. <i>Nature Materials</i> , 2010 , 9, 929-37	27	474
74	Binodal, wireless epidermal electronic systems with in-sensor analytics for neonatal intensive care. <i>Science</i> , 2019 , 363,	33.3	316
73	Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. <i>Nature Materials</i> , 2016 , 15, 782-791	27	296
72	High-performance biodegradable/transient electronics on biodegradable polymers. <i>Advanced Materials</i> , 2014 , 26, 3905-11	24	283
71	Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. <i>Nano Letters</i> , 2011 , 11, 3881-6	11.5	281
70	High-resolution patterns of quantum dots formed by electrohydrodynamic jet printing for light-emitting diodes. <i>Nano Letters</i> , 2015 , 15, 969-73	11.5	278
69	Self-assembled three dimensional network designs for soft electronics. <i>Nature Communications</i> , 2017 , 8, 15894	17.4	238
68	A wireless closed-loop system for optogenetic peripheral neuromodulation. <i>Nature</i> , 2019 , 565, 361-365	50.4	217
67	Vertical ZnO nanowires/graphene hybrids for transparent and flexible field emission. <i>Journal of Materials Chemistry</i> , 2011 , 21, 3432-3437		216
66	Directed self-assembly of block copolymers for next generation nanolithography. <i>Materials Today</i> , 2013 , 16, 468-476	21.8	212
65	Battery-free, wireless sensors for full-body pressure and temperature mapping. <i>Science Translational Medicine</i> , 2018 , 10,	17.5	176
64	Dissolution Behaviors and Applications of Silicon Oxides and Nitrides in Transient Electronics. <i>Advanced Functional Materials</i> , 2014 , 24, 4427-4434	15.6	170
63	Mussel-inspired block copolymer lithography for low surface energy materials of teflon, graphene, and gold. <i>Advanced Materials</i> , 2011 , 23, 5618-22	24	167
62	Double-heterojunction nanorod light-responsive LEDs for display applications. <i>Science</i> , 2017 , 355, 616-6	5 39 .3	157
61	Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement. <i>Nano Letters</i> , 2009 , 9, 2300-5	11.5	134
60	Universal Block Copolymer Lithography for Metals, Semiconductors, Ceramics, and Polymers. <i>Advanced Materials</i> , 2008 , 20, 1898-1904	24	130
59	Surface energy modification by spin-cast, large-area graphene film for block copolymer lithography. <i>ACS Nano</i> , 2010 , 4, 5464-70	16.7	122

(2009-2016)

58	Highly tunable refractive index visible-light metasurface from block copolymer self-assembly. <i>Nature Communications</i> , 2016 , 7, 12911	17.4	109
57	Soft, thin skin-mounted power management systems and their use in wireless thermography. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6131-6	11.5	108
56	One-dimensional metal nanowire assembly via block copolymer soft graphoepitaxy. <i>Nano Letters</i> , 2010 , 10, 3500-5	11.5	96
55	Laser Writing Block Copolymer Self-Assembly on Graphene Light-Absorbing Layer. <i>ACS Nano</i> , 2016 , 10, 3435-42	16.7	89
54	Materials and designs for wirelessly powered implantable light-emitting systems. Small, 2012, 8, 2812-8	311	88
53	Ultralarge-area block copolymer lithography enabled by disposable photoresist prepatterning. <i>ACS Nano</i> , 2010 , 4, 5181-6	16.7	87
52	Multilayer Transfer Printing for Pixelated, Multicolor Quantum Dot Light-Emitting Diodes. <i>ACS Nano</i> , 2016 , 10, 4920-5	16.7	85
51	Flexible and transferrable self-assembled nanopatterning on chemically modified graphene. <i>Advanced Materials</i> , 2013 , 25, 1331-5	24	84
50	Multimodal Sensing with a Three-Dimensional Piezoresistive Structure. ACS Nano, 2019, 13, 10972-1097	79 6.7	75
49	Hierarchical Self-Assembly of Block Copolymers for Lithography-Free Nanopatterning. <i>Advanced Materials</i> , 2008 , 20, 2303-2307	24	72
48	Freestanding 3D Mesostructures, Functional Devices, and Shape-Programmable Systems Based on Mechanically Induced Assembly with Shape Memory Polymers. <i>Advanced Materials</i> , 2019 , 31, e1805615	24	72
47	Soft, Skin-Interfaced Microfluidic Systems with Wireless, Battery-Free Electronics for Digital, Real-Time Tracking of Sweat Loss and Electrolyte Composition. <i>Small</i> , 2018 , 14, e1802876	11	66
46	Development of a neural interface for high-definition, long-term recording in rodents and nonhuman primates. <i>Science Translational Medicine</i> , 2020 , 12,	17.5	64
45	Novel Complex Nanostructure from Directed Assembly of Block Copolymers on Incommensurate Surface Patterns. <i>Advanced Materials</i> , 2007 , 19, 3271-3275	24	63
44	Biological lipid membranes for on-demand, wireless drug delivery from thin, bioresorbable electronic implants. <i>NPG Asia Materials</i> , 2015 , 7,	10.3	61
43	Block copolymer multiple patterning integrated with conventional ArF lithography. <i>Soft Matter</i> , 2010 , 6, 120-125	3.6	60
42	Defect Structure in Thin Films of a Lamellar Block Copolymer Self-Assembled on Neutral Homogeneous and Chemically Nanopatterned Surfaces. <i>Macromolecules</i> , 2006 , 39, 5466-5470	5.5	60
41	Spontaneous Lamellar Alignment in Thickness-Modulated Block Copolymer Films. <i>Advanced Functional Materials</i> , 2009 , 19, 2584-2591	15.6	59

40	Directed self-assembly of block copolymers for universal nanopatterning. Soft Matter, 2013, 9, 2780	3.6	54
39	Natural Wax for Transient Electronics. Advanced Functional Materials, 2018, 28, 1801819	15.6	50
38	3D Tailored Crumpling of Block-Copolymer Lithography on Chemically Modified Graphene. <i>Advanced Materials</i> , 2016 , 28, 1591-6	24	46
37	Electric Actuation of Nanostructured Thermoplastic Elastomer Gels with Ultralarge Electrostriction Coefficients. <i>Advanced Functional Materials</i> , 2011 , 21, 3242-3249	15.6	44
36	One-Dimensional Nanoassembly of Block Copolymers Tailored by Chemically Patterned Surfaces. <i>Macromolecules</i> , 2009 , 42, 1189-1193	5.5	41
35	Ferromagnetic, folded electrode composite as a soft interface to the skin for long-term electrophysiological recording. <i>Advanced Functional Materials</i> , 2016 , 26, 7281-7290	15.6	40
34	Ultralarge Area Sub-10 nm Plasmonic Nanogap Array by Block Copolymer Self-Assembly for Reliable High-Sensitivity SERS. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 44660-44667	9.5	36
33	Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. <i>Advanced Functional Materials</i> , 2015 , 25, 1338-1343	15.6	34
32	Wrinkle-directed self-assembly of block copolymers for aligning of nanowire arrays. <i>Advanced Materials</i> , 2014 , 26, 4665-70	24	34
31	Fabrication of Luminescent Nanoarchitectures by Electron Irradiation of Polystyrene. <i>Advanced Materials</i> , 2008 , 20, 2094-2098	24	34
30	Wireless Microfluidic Systems for Programmed, Functional Transformation of Transient Electronic Devices. <i>Advanced Functional Materials</i> , 2015 , 25, 5100-5106	15.6	32
29	Anomalous rapid defect annihilation in self-assembled nanopatterns by defect melting. <i>Nano Letters</i> , 2015 , 15, 1190-6	11.5	31
28	Three-dimensional electronic microfliers inspired by wind-dispersed seeds. <i>Nature</i> , 2021 , 597, 503-510	50.4	28
27	Dry Transient Electronic Systems by Use of Materials that Sublime. <i>Advanced Functional Materials</i> , 2017 , 27, 1606008	15.6	27
26	Mechanically Guided Post-Assembly of 3D Electronic Systems. <i>Advanced Functional Materials</i> , 2018 , 28, 1803149	15.6	26
25	Large-area, highly oriented lamellar block copolymer nanopatterning directed by graphoepitaxially assembled cylinder nanopatterns. <i>Journal of Materials Chemistry</i> , 2012 , 22, 6307		24
24	Three-Dimensional Silicon Electronic Systems Fabricated by Compressive Buckling Process. <i>ACS Nano</i> , 2018 , 12, 4164-4171	16.7	23
23	Protein nanoarrays on a highly-oriented lamellar surface. <i>Chemical Communications</i> , 2010 , 46, 1911-3	5.8	22

(2018-2021)

22	Battery-free, wireless soft sensors for continuous multi-site measurements of pressure and temperature from patients at risk for pressure injuries. <i>Nature Communications</i> , 2021 , 12, 5008	17.4	21
21	Flexible and implantable capacitive microelectrode for bio-potential acquisition. <i>Biochip Journal</i> , 2017 , 11, 153-163	4	20
20	Fractal Web Design of a Hemispherical Photodetector Array with Organic-Dye-Sensitized Graphene Hybrid Composites. <i>Advanced Materials</i> , 2020 , 32, e2004456	24	12
19	Spin coating nanopatterned multielemental materials via self-assembled nanotemplates. <i>Nanotechnology</i> , 2009 , 20, 225301	3.4	11
18	Bimodal phase separated block copolymer/homopolymer blends self-assembly for hierarchical porous metal nanomesh electrodes. <i>Nanoscale</i> , 2017 , 10, 100-108	7.7	11
17	Effect of ethanolamine passivation of ZnO nanoparticles in quantum dot light emitting diode structure. <i>Current Applied Physics</i> , 2019 , 19, 998-1005	2.6	10
16	Flexible electrochromic and thermochromic hybrid smart window based on a highly durable ITO/graphene transparent electrode. <i>Chemical Engineering Journal</i> , 2021 , 416, 129028	14.7	9
15	Single-step self-assembly of multilayer graphene based dielectric nanostructures. <i>FlatChem</i> , 2017 , 4, 61-67	5.1	7
14	Negative-tone block copolymer lithography by in situ surface chemical modification. <i>Small</i> , 2014 , 10, 4207-12	11	4
13	Durability-enhanced monolithic inorganic electrochromic devices with tantalum-doped nickel oxide as a counter electrode. <i>Solar Energy Materials and Solar Cells</i> , 2022 , 234, 111435	6.4	4
12	Geometric effects of nanocrystals in nonvolatile memory using block copolymer nanotemplate. <i>Solid-State Electronics</i> , 2009 , 53, 640-643	1.7	3
11	Hierarchical Self-Assembly of Thickness-Modulated Block Copolymer Thin Films for Controlling Nanodomain Orientations inside Bare Silicon Trenches. <i>Polymers</i> , 2021 , 13,	4.5	3
10	Flexible Electronics: Materials and Designs for Wirelessly Powered Implantable Light-Emitting Systems (Small 18/2012). <i>Small</i> , 2012 , 8, 2770-2770	11	2
9	Surface Nanopatterning: Mussel-Inspired Block Copolymer Lithography for Low Surface Energy Materials of Teflon, Graphene, and Gold (Adv. Mater. 47/2011). <i>Advanced Materials</i> , 2011 , 23, 5584-5584	1 ²⁴	2
8	Artificial stretchable armor for skin-interfaced wearable devices and soft robotics. <i>Extreme Mechanics Letters</i> , 2022 , 50, 101537	3.9	2
7	Self-Assembled Nanostructures of Block Copolymers on Random Copolymer Brush. <i>Solid State Phenomena</i> , 2007 , 124-126, 579-582	0.4	1
6	The Synthesis of Random Brush for Nanostructure of Block Copolymer. <i>Macromolecular Symposia</i> , 2007 , 249-250, 303-306	0.8	1
5	Electronic Stuctures: Mechanically Guided Post-Assembly of 3D Electronic Systems (Adv. Funct. Mater. 48/2018). <i>Advanced Functional Materials</i> , 2018 , 28, 1870344	15.6	1

4	Collapse-Induced Multimer Formation of Self-Assembled Nanoparticles for Surface Enhanced Raman Scattering. <i>Coatings</i> , 2021 , 11, 76	2.9	О
3	Directed high-Iblock copolymer self-assembly by laser writing on silicon substrate. <i>Journal of Applied Polymer Science</i> ,52291	2.9	0
2	Electrodes: Ferromagnetic, Folded Electrode Composite as a Soft Interface to the Skin for Long-Term Electrophysiological Recording (Adv. Funct. Mater. 40/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 7280-7280	15.6	
1	Self-Assembly Nanofabrication via Mussel-Inspired Interfacial Engineering. <i>Applied Mechanics and Materials</i> , 2012 , 229-231, 2749-2752	0.3	