InÃ^as C. Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4602409/publications.pdf

Version: 2024-02-01

INÃAS C SANTOS

#	Article	IF	CITATIONS
1	Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chemical Reviews, 2020, 120, 3328-3380.	47.7	151
2	Applications of MALDI-TOF MS in environmental microbiology. Analyst, The, 2016, 141, 2827-2837.	3.5	96
3	A review of the analytical methods used for beer ingredient and finished product analysis and quality control. Analytica Chimica Acta, 2019, 1085, 1-20.	5.4	84
4	Ion Activation Methods for Peptides and Proteins. Analytical Chemistry, 2020, 92, 227-251.	6.5	69
5	Recent advances and applications of gas chromatography vacuum ultraviolet spectroscopy. Journal of Separation Science, 2017, 40, 138-151.	2.5	67
6	NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiology Reviews, 2018, 42, 672-693.	8.6	54
7	Treatment modalities for the reuse of produced waste from oil and gas development. Science of the Total Environment, 2018, 643, 107-118.	8.0	43
8	Analysis of bacterial FAMEs using gas chromatography – vacuum ultraviolet spectroscopy for the identification and discrimination of bacteria. Talanta, 2018, 182, 536-543.	5.5	40
9	Recent developments in the characterization of nucleic acids by liquid chromatography, capillary electrophoresis, ion mobility, and mass spectrometry (2010–2020). Journal of Separation Science, 2021, 44, 340-372.	2.5	32
10	Micro solid phase spectrophotometry in a sequential injection lab-on-valve platform for cadmium, zinc, and copper determination in freshwaters. Analytica Chimica Acta, 2015, 891, 171-178.	5.4	30
11	Characterizing variable biogeochemical changes during the treatment of produced oilfield waste. Science of the Total Environment, 2018, 634, 1519-1529.	8.0	27
12	Exploring the links between groundwater quality and bacterial communities near oil and gas extraction activities. Science of the Total Environment, 2018, 618, 165-173.	8.0	23
13	Structural basis for assembly of non-canonical small subunits into type I-C Cascade. Nature Communications, 2020, 11, 5931.	12.8	23
14	A Review of Analytical Methods for Characterizing the Potential Environmental Impacts of Unconventional Oil and Gas Development. Analytical Chemistry, 2019, 91, 689-703.	6.5	22
15	Rapid Profiling and Authentication of Vanilla Extracts Using Gas Chromatography-Vacuum Ultraviolet Spectroscopy. Food Analytical Methods, 2017, 10, 4068-4078.	2.6	17
16	Characterization of bacterial diversity in contaminated groundwater using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Science of the Total Environment, 2018, 622-623, 1562-1571.	8.0	17
17	MALDI-TOF MS for the Identification of Cultivable Organic-Degrading Bacteria in Contaminated Groundwater near Unconventional Natural Gas Extraction Sites. Microorganisms, 2017, 5, 47.	3.6	15
18	Analysis of bacteria stress responses to contaminants derived from shale energy extraction. Environmental Sciences: Processes and Impacts, 2019, 21, 269-278.	3.5	14

InÃ≜s C. Santos

#	Article	IF	CITATIONS
19	Large-volume injection gas chromatography-vacuum ultraviolet spectroscopy for the qualitative and quantitative analysis of fatty acids in blood plasma. Analytica Chimica Acta, 2019, 1053, 169-177.	5.4	14
20	Screening of cadmium and lead in potentially contaminated waters using a spectrophotometric sequential injection lab-on-valve methodology. Talanta, 2015, 143, 359-365.	5.5	13
21	Paired-ion electrospray ionization– triple quadrupole tandem mass spectrometry for quantification of anionic surfactants in waters. Talanta, 2015, 143, 320-327.	5.5	12
22	Analytical Methods for the Comprehensive Characterization of Produced Water. Separation Science and Technology, 2019, 11, 199-217.	0.2	12
23	lodine speciation in coastal and inland bathing waters and seaweeds extracts using a sequential injection standard addition flow-batch method. Talanta, 2015, 133, 7-14.	5.5	11
24	Development of flow injection potentiometric methods for the off-line and on-line determination of fluoride to monitor the biodegradation of a monofluorophenol in two bioreactors. Talanta, 2011, 84, 1291-1297.	5.5	10
25	Sequential injection methodology for carbon speciation in bathing waters. Analytica Chimica Acta, 2013, 778, 38-47.	5.4	10
26	Influence of Primary Structure on Fragmentation of Native-Like Proteins by Ultraviolet Photodissociation. Journal of the American Society for Mass Spectrometry, 2021, 32, 2860-2873.	2.8	10
27	Ultraviolet Photodissociation and Activated Electron Photodetachment Mass Spectrometry for Top-Down Sequencing of Modified Oligoribonucleotides. Journal of the American Society for Mass Spectrometry, 2022, 33, 510-520.	2.8	9
28	Sequential injection system exploring the standard addition method for phosphate determination in high salinity samples: interstitial, transitional and coastal waters. Analytical Methods, 2012, 4, 1452.	2.7	8
29	Structural Characterization of Carbonic Anhydrase–Arylsulfonamide Complexes Using Ultraviolet Photodissociation Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 1370-1379.	2.8	7
30	Use of solid phase extraction for the sequential injection determination of alkaline phosphatase activity in dynamic water systems. Talanta, 2012, 98, 203-210.	5.5	6
31	Seasonal monitoring of inland bathing waters using a sequential injection method as a fast and effective tool for nutrient quantification (N : P). Analytical Methods, 2016, 8, 1973-1980.	2.7	6
32	Application of Mid- and Near-Infrared Spectroscopy for the Control and Chemical Evaluation of Brine Solutions and Traditional Sea Salts. Food Analytical Methods, 2013, 6, 470-480.	2.6	5
33	Flow-Injection Spectrophotometric Determination of Bromate in Bottled Drinking Water Samples Using Chlorpromazine Reagent and a Liquid Waveguide Capillary Cell. Analytical Sciences, 2013, 29, 563-570.	1.6	5
34	Mass Spectrometry for the Study of Microbial Communities in Environmental Waters. Advances in Chemical Pollution, Environmental Management and Protection, 2017, 1, 353-380.	0.5	3
35	Attitudes, Perceptions, and Geospatial Analysis of Water Quality and Individual Health Status in a High-Fracking Region. Water (Switzerland), 2019, 11, 1633.	2.7	3
36	Pullâ€Down of Metalloproteins in Their Native States by Using Desthiobiotinâ€Based Probes. ChemBioChem, 2019, 20, 1003-1007.	2.6	3

InÃ⁴s C. Santos

#	Article	IF	CITATIONS
37	Membrane-based Separation in Flow Analysis for Environmental and Food Applications. Separation and Purification Reviews, 2020, 49, 37-54.	5.5	3
38	Development of a Turbidimetric Sequential Injection System to Monitor the Codfish Desalting Process. Food Analytical Methods, 2012, 5, 287-295.	2.6	2
39	Determination of Noncovalent Binding Using a Continuous Stirred Tank Reactor as a Flow Injection Device Coupled to Electrospray Ionization Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2015, 26, 1204-1212.	2.8	2
40	Development of a low pressure chromatographic flow system for monitoring the biodegradation of ofloxacin and ciprofloxacin. Analytical Methods, 2016, 8, 5457-5465.	2.7	1
41	Convolutional neural network for preprocessingâ€free bacterial Spectra identification. Journal of Chemometrics, 2020, 34, e3304.	1.3	0
42	Detecting Harmful Pathogens In Water: Characterizing The Link Between Fracking And Water Safety. , 2018, , .		0
43	Authentication Of Vanilla Extracts Using Gas Chromatography – Vacuum Ultraviolet Spectroscopy. , 2018, , .		Ο