Laurent Bedoussac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4602200/publications.pdf

Version: 2024-02-01

414414 567281 35 1,498 15 32 citations h-index g-index papers 38 38 38 1335 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A modelling chain combining soft and hard models to assess a bundle of ecosystem services provided by a diversity of cereal-legume intercrops. European Journal of Agronomy, 2022, 132, 126412.	4.1	7
2	Supply Chain Perspectives on Breeding for Legume–Cereal Intercrops. Frontiers in Plant Science, 2022, 13, 844635.	3.6	12
3	Interplay: A game for the participatory design of locally adapted cereal–legume intercrops. Agricultural Systems, 2022, 201, 103438.	6.1	5
4	THE 4 C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY. Frontiers of Agricultural Science and Engineering, 2021, .	1.4	20
5	Plant nitrogen nutrition status in intercrops– a review of concepts and methods. European Journal of Agronomy, 2021, 124, 126229.	4.1	19
6	Interspecific interactions regulate plant reproductive allometry in cereal–legume intercropping systems. Journal of Applied Ecology, 2021, 58, 2579-2589.	4.0	6
7	Design and multicriteria assessment of low-input cropping systems based on plant diversification in southwestern France. Agronomy for Sustainable Development, 2021, 41, 1.	5.3	11
8	TRANSLATING THE MULTIACTOR APPROACH TO RESEARCH INTO PRACTICE USING A WORKSHOP APPROACH FOCUSING ON SPECIES MIXTURES. Frontiers of Agricultural Science and Engineering, 2021, .	1.4	4
9	Cultivar Grain Yield in Durum Wheat-Grain Legume Intercrops Could Be Estimated From Sole Crop Yields and Interspecific Interaction Index. Frontiers in Plant Science, 2021, 12, 733705.	3.6	12
10	Promoting crop pest control by plant diversification in agricultural landscapes: A conceptual framework for analysing feedback loops between agro-ecological and socio-economic effects. Advances in Ecological Research, 2021, 65, 133-165.	2.7	11
11	Contrasted response to climate change of winter and spring grain legumes in southwestern France. Field Crops Research, 2020, 259, 107967.	5.1	5
12	Tracking on-farm innovative practices to support crop mixture design: The case of annual mixtures including a legume crop. European Journal of Agronomy, 2020, 115 , 126018 .	4.1	29
13	Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles?. Advances in Agronomy, 2020, 160, 1-50.	5.2	86
14	Analyse des représentations sociales des enseignants.es du «Âproduire autrement» vis-Ã-vis des directives ministérielles. Éducation Relative Å L'environnement, 2020, , .	0.2	0
15	Calibration and evaluation of the STICS soil-crop model for faba bean to explain variability in yield and N2 fixation. European Journal of Agronomy, 2019, 104, 63-77.	4.1	25
16	Peer-Reviewed Literature on Grain Legume Species in the WoS (1980–2018): A Comparative Analysis of Soybean and Pulses. Sustainability, 2019, 11, 6833.	3.2	20
17	Screen for sustainable cropping systems in the rain-fed area on the Loess Plateau of China. Soil and Tillage Research, 2018, 176, 26-35.	5.6	11
18	Supporting Decision for Environment-Friendly Practices in the Agri-Food Sector. International Journal of Agricultural and Environmental Information Systems, 2018, 9, 1-21.	2.0	7

#	Article	IF	Citations
19	Yield gap analysis extended to marketable grain reveals the profitability of organic lentil-spring wheat intercrops. Agronomy for Sustainable Development, 2018, 38, 1.	5.3	21
20	Grain legume–cereal intercropping systems. Burleigh Dodds Series in Agricultural Science, 2018, , 243-256.	0.2	17
21	Sunflower crop: environmental-friendly and agroecological. OCL - Oilseeds and Fats, Crops and Lipids, 2017, 24, D304.	1.4	29
22	Combined Argumentation and Simulation to Support Decision. Lecture Notes in Computer Science, 2017, , 275-281.	1.3	0
23	Designing and Evaluating Arable Cropping Systems with Cash and Cover Crop Legumes in Sole Crop and Intercrop to Improve Nitrogen use Efficiency. Agricultural Research & Technology: Open Access Journal, 2017, 12, .	0.1	0
24	Enhancing Yields in Organic Crop Production by Eco-Functional Intensification. Sustainable Agriculture Research, 2015, 4, 42.	0.3	41
25	Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy for Sustainable Development, 2015, 35, 911-935.	5.3	453
26	Models, Developments, and Perspectives of Mutual Legume Intercropping. Advances in Agronomy, 2015, 130, 337-419.	5.2	27
27	Is there an associational resistance of winter pea–durum wheat intercrops towards <i><scp>A</scp>cyrthosiphon pisum </i> <scp>H</scp> arris?. Journal of Applied Entomology, 2014, 138, 577-585.	1.8	14
28	Eco-functional Intensification by Cereal-Grain Legume Intercropping in Organic Farming Systems for Increased Yields, Reduced Weeds and Improved Grain Protein Concentration., 2014,, 47-63.		12
29	Pratiques agricoles innovantes et logistique des coopératives agricoles. Une étude ex-ante sur l'acceptabilité de cultures associées blé dur-légumineuses. Économie Rurale, 2013, , 25-45.	0.4	12
30	Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. European Journal of Agronomy, 2012, 40, 39-53.	4.1	154
31	A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: Application to durum wheat–winter pea intercrops. Field Crops Research, 2011, 124, 25-36.	5.1	105
32	Mutual Legume Intercropping for Forage Production in Temperate Regions. Sustainable Agriculture Reviews, 2011, , 347-365.	1.1	14
33	The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant and Soil, 2010, 330, 19-35.	3.7	157
34	Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop. Plant and Soil, 2010, 330, 37-54.	3.7	126
35	Defensive volatile secretions of two diplopod species attract the carrion ball roller scarab Canthon morsei (Coleoptera: Scarabaeidae). Chemoecology, 2007, 17, 163-167.	1.1	19