Laurent Bedoussac

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4602200/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ecological principles underlying the increase of productivity achieved by cereal-grain legume intercrops in organic farming. A review. Agronomy for Sustainable Development, 2015, 35, 911-935.	5.3	453
2	The efficiency of a durum wheat-winter pea intercrop to improve yield and wheat grain protein concentration depends on N availability during early growth. Plant and Soil, 2010, 330, 19-35.	3.7	157
3	Pea–wheat intercrops in low-input conditions combine high economic performances and low environmental impacts. European Journal of Agronomy, 2012, 40, 39-53.	4.1	154
4	Dynamic analysis of competition and complementarity for light and N use to understand the yield and the protein content of a durum wheat–winter pea intercrop. Plant and Soil, 2010, 330, 37-54.	3.7	126
5	A comparison of commonly used indices for evaluating species interactions and intercrop efficiency: Application to durum wheat–winter pea intercrops. Field Crops Research, 2011, 124, 25-36.	5.1	105
6	Designing intercrops for high yield, yield stability and efficient use of resources: Are there principles?. Advances in Agronomy, 2020, 160, 1-50.	5.2	86
7	Enhancing Yields in Organic Crop Production by Eco-Functional Intensification. Sustainable Agriculture Research, 2015, 4, 42.	0.3	41
8	Sunflower crop: environmental-friendly and agroecological. OCL - Oilseeds and Fats, Crops and Lipids, 2017, 24, D304.	1.4	29
9	Tracking on-farm innovative practices to support crop mixture design: The case of annual mixtures including a legume crop. European Journal of Agronomy, 2020, 115, 126018.	4.1	29
10	Models, Developments, and Perspectives of Mutual Legume Intercropping. Advances in Agronomy, 2015, 130, 337-419.	5.2	27
11	Calibration and evaluation of the STICS soil-crop model for faba bean to explain variability in yield and N2 fixation. European Journal of Agronomy, 2019, 104, 63-77.	4.1	25
12	Yield gap analysis extended to marketable grain reveals the profitability of organic lentil-spring wheat intercrops. Agronomy for Sustainable Development, 2018, 38, 1.	5.3	21
13	Peer-Reviewed Literature on Grain Legume Species in the WoS (1980–2018): A Comparative Analysis of Soybean and Pulses. Sustainability, 2019, 11, 6833.	3.2	20
14	THE 4 C APPROACH AS A WAY TO UNDERSTAND SPECIES INTERACTIONS DETERMINING INTERCROPPING PRODUCTIVITY. Frontiers of Agricultural Science and Engineering, 2021, .	1.4	20
15	Defensive volatile secretions of two diplopod species attract the carrion ball roller scarab Canthon morsei (Coleoptera: Scarabaeidae). Chemoecology, 2007, 17, 163-167.	1.1	19
16	Plant nitrogen nutrition status in intercrops– a review of concepts and methods. European Journal of Agronomy, 2021, 124, 126229.	4.1	19
17	Grain legume–cereal intercropping systems. Burleigh Dodds Series in Agricultural Science, 2018, , 243-256.	0.2	17
18	ls there an associational resistance of winter pea–durum wheat intercrops towards <i><scp>A</scp>cyrthosiphon pisum </i> <scp>H</scp> arris?. Journal of Applied Entomology, 2014, 138, 577-585.	1.8	14

LAURENT BEDOUSSAC

#	Article	IF	CITATIONS
19	Mutual Legume Intercropping for Forage Production in Temperate Regions. Sustainable Agriculture Reviews, 2011, , 347-365.	1.1	14
20	Eco-functional Intensification by Cereal-Grain Legume Intercropping in Organic Farming Systems for Increased Yields, Reduced Weeds and Improved Grain Protein Concentration. , 2014, , 47-63.		12
21	Pratiques agricoles innovantes et logistique des coopératives agricoles. Une étude ex-ante sur l'acceptabilité de cultures associées blé dur-légumineuses. Économie Rurale, 2013, , 25-45.	0.4	12
22	Cultivar Grain Yield in Durum Wheat-Grain Legume Intercrops Could Be Estimated From Sole Crop Yields and Interspecific Interaction Index. Frontiers in Plant Science, 2021, 12, 733705.	3.6	12
23	Supply Chain Perspectives on Breeding for Legume–Cereal Intercrops. Frontiers in Plant Science, 2022, 13, 844635.	3.6	12
24	Screen for sustainable cropping systems in the rain-fed area on the Loess Plateau of China. Soil and Tillage Research, 2018, 176, 26-35.	5.6	11
25	Design and multicriteria assessment of low-input cropping systems based on plant diversification in southwestern France. Agronomy for Sustainable Development, 2021, 41, 1.	5.3	11
26	Promoting crop pest control by plant diversification in agricultural landscapes: A conceptual framework for analysing feedback loops between agro-ecological and socio-economic effects. Advances in Ecological Research, 2021, 65, 133-165.	2.7	11
27	Supporting Decision for Environment-Friendly Practices in the Agri-Food Sector. International Journal of Agricultural and Environmental Information Systems, 2018, 9, 1-21.	2.0	7
28	A modelling chain combining soft and hard models to assess a bundle of ecosystem services provided by a diversity of cereal-legume intercrops. European Journal of Agronomy, 2022, 132, 126412.	4.1	7
29	Interspecific interactions regulate plant reproductive allometry in cereal–legume intercropping systems. Journal of Applied Ecology, 2021, 58, 2579-2589.	4.0	6
30	Contrasted response to climate change of winter and spring grain legumes in southwestern France. Field Crops Research, 2020, 259, 107967.	5.1	5
31	Interplay: A game for the participatory design of locally adapted cereal–legume intercrops. Agricultural Systems, 2022, 201, 103438.	6.1	5
32	TRANSLATING THE MULTIACTOR APPROACH TO RESEARCH INTO PRACTICE USING A WORKSHOP APPROACH FOCUSING ON SPECIES MIXTURES. Frontiers of Agricultural Science and Engineering, 2021, .	1.4	4
33	Combined Argumentation and Simulation to Support Decision. Lecture Notes in Computer Science, 2017, , 275-281.	1.3	0
34	Designing and Evaluating Arable Cropping Systems with Cash and Cover Crop Legumes in Sole Crop and Intercrop to Improve Nitrogen use Efficiency. Agricultural Research & Technology: Open Access Journal, 2017, 12, .	0.1	0
35	Analyse des représentations sociales des enseignants.es du «Âproduire autrement» vis-Ã-vis des directives ministérielles. Éducation Relative À L'environnement, 2020, , .	0.2	0