Eirini Kakkava

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4602182/publications.pdf

Version: 2024-02-01

758635 1125271 23 749 12 13 h-index citations g-index papers 23 23 23 608 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Full characterization of partially measured systems with neural networks., 2021,,.		O
2	Spatial self-beam cleaning in spatiotemporally mode-locked fiber lasers. , 2021, , .		0
3	High-resolution microfabrication through a graded-index multimode optical fiber. , 2021, , .		O
4	Predicting optical transmission through complex scattering media from reflection patterns with deep neural networks. Optics Communications, 2021, 492, 126968.	1.0	13
5	Actor neural networks for the robust control of partially measured nonlinear systems showcased for image propagation through diffuse media. Nature Machine Intelligence, 2020, 2, 403-410.	8.3	46
6	Spectral and Spatial Shaping of Spatiotemporal Nonlinearities in Multimode Fibers. , 2020, , .		0
7	Controlling spatiotemporal nonlinearities in multimode fibers with deep neural networks. APL Photonics, 2020, 5, 030804.	3.0	43
8	Deep Learning-Based Image Classification through a Multimode Fiber in the Presence of Wavelength Drift. Applied Sciences (Switzerland), 2020, 10, 3816.	1.3	16
9	In Vitro Cytocompatibility Assessment of Ti-Modified, Silicon-oxycarbide-Based, Polymer-Derived, Ceramic-Implantable Electrodes under Pacing Conditions. ACS Applied Materials & Samp; Interfaces, 2020, 12, 17244-17253.	4.0	13
10	Single-mode output by controlling the spatiotemporal nonlinearities in mode-locked femtosecond multimode fiber lasers. Advanced Photonics, 2020, 2, .	6.2	75
11	Dispersion-Managed Soliton Multimode Fiber Laser. , 2020, , .		4
12	All-fiber spatiotemporally mode-locked laser with multimode fiber-based filtering. Optics Express, 2020, 28, 23433.	1.7	37
13	Computer generated optical volume elements by additive manufacturing. Nanophotonics, 2020, 9, 4173-4181.	2.9	19
14	Imaging through multimode fibers using deep learning: The effects of intensity versus holographic recording of the speckle pattern. Optical Fiber Technology, 2019, 52, 101985.	1.4	47
15	Learning Spatiotemporal Nonlinearities in Graded-Index Multimode Fibers with Deep Neural Networks. , 2019, , .		O
16	Wavelength Independent Image Classification through a Multimode Fiber using Deep Neural Networks. , 2019, , .		1
17	Selective femtosecond laser ablation via two-photon fluorescence imaging through a multimode fiber. Biomedical Optics Express, 2019, 10, 423.	1.5	35
18	Efficient Image Classification through a Multimode Fiber using Deep Neural Networks in presence of Wavelength Drifting. , 2019, , .		2

EIRINI KAKKAVA

#	Article	IF	CITATIONS
19	Spatiotemporal self-similar fiber laser. Optica, 2019, 6, 1412.	4.8	102
20	Deep neural networks for seeing through multimode fibers. , 2019, , .		1
21	Learning to see through multimode fibers. Optica, 2018, 5, 960.	4.8	274
22	Ultrashort pulse laser ablation through a multi-core fiber. , 2017, , .		0
23	High power, ultrashort pulse control through a multi-core fiber for ablation. Optics Express, 2017, 25, 11491.	1.7	21