
Thomas A Randall

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4600495/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A two-way switch for inositol pyrophosphate signaling: Evolutionary history and biological significance of a unique, bifunctional kinase/phosphatase. Advances in Biological Regulation, 2020, 75, 100674.	2.3	33
2	Are allergens more abundant and/or more stable than other proteins in pollens and dust?. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1267-1269.	5.7	7
3	Bacteria Boost Mammalian Host NAD Metabolism by Engaging the Deamidated Biosynthesis Pathway. Cell Metabolism, 2020, 31, 564-579.e7.	16.2	130
4	Genomic Sequencing To Identify Potential Causative Mutation(s) of Neurospora crassa <i>col-4</i> . Microbiology Resource Announcements, 2020, 9, .	0.6	0
5	Similarity between mutation spectra in hypermutated genomes of rubella virus and in SARS-CoV-2 genomes accumulated during the COVID-19 pandemic. PLoS ONE, 2020, 15, e0237689.	2.5	53
6	Title is missing!. , 2020, 15, e0237689.		0
7	Title is missing!. , 2020, 15, e0237689.		0
8	Title is missing!. , 2020, 15, e0237689.		0
9	Title is missing!. , 2020, 15, e0237689.		0
10	The Draft Genome Assembly of <i>Dermatophagoides pteronyssinus</i> Supports Identification of Novel Allergen Isoforms in <i>Dermatophagoides</i> Species. International Archives of Allergy and Immunology, 2018, 175, 136-146.	2.1	14
11	New Insights into Cockroach Allergens. Current Allergy and Asthma Reports, 2017, 17, 25.	5.3	63
12	The Limitations of Existing Approaches in Improving MicroRNA Target Prediction Accuracy. Methods in Molecular Biology, 2017, 1617, 133-158.	0.9	16
13	Are dust mite allergens more abundant and/or more stable than other Dermatophagoides pteronyssinus proteins?. Journal of Allergy and Clinical Immunology, 2017, 139, 1030-1032.e1.	2.9	15
14	Proteases of Dermatophagoides pteronyssinus. International Journal of Molecular Sciences, 2017, 18, 1204.	4.1	14
15	Serological, genomic and structural analyses of the major mite allergen Der p 23. Clinical and Experimental Allergy, 2016, 46, 365-376.	2.9	69
16	Emergence and evolution of Zfp36l3. Molecular Phylogenetics and Evolution, 2016, 94, 518-530.	2.7	11
17	Telomerase lost?. Chromosoma, 2016, 125, 65-73.	2.2	64
18	Genomic, RNAseq, and Molecular Modeling Evidence Suggests That the Major Allergen Domain in Insects Evolved from a Homodimeric Origin. Genome Biology and Evolution, 2013, 5, 2344-2358.	2.5	18

THOMAS A RANDALL

#	Article	IF	CITATIONS
19	Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans. ISME Journal, 2012, 6, 1858-1868.	9.8	195
20	Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas. Gut Microbes, 2010, 1, 138-147.	9.8	355
21	Phosphatidylethanolamine <i>N</i> â€methyltransferase <i>(PEMT)</i> gene expression is induced by estrogen in human and mouse primary hepatocytes. FASEB Journal, 2007, 21, 2622-2632.	0.5	195
22	Large-Scale Gene Discovery in the Oomycete Phytophthora infestans Reveals Likely Components of Phytopathogenicity Shared with True Fungi. Molecular Plant-Microbe Interactions, 2005, 18, 229-243.	2.6	160
23	Chromosomal heteromorphism and an apparent translocation detected using a BAC contig spanning the mating type locus of Phytophthora infestans. Fungal Genetics and Biology, 2003, 38, 75-84.	2.1	25
24	Characterization of Phytophthora infestans genes regulated during the interaction with potato. Molecular Plant Pathology, 2002, 3, 473-485.	4.2	25
25	Construction of a Bacterial Artificial Chromosome Library of Phytophthora infestans and Transformation of Clones into P. infestans. Fungal Genetics and Biology, 1999, 28, 160-170.	2.1	34
26	Action of Repeat-Induced Point Mutation on Both Strands of a Duplex and on Tandem Duplications of Various Sizes in Neurospora. Genetics, 1999, 153, 705-714.	2.9	86
27	Families of repeated DNA in the oomycete Phytophthora infestans and their distribution within the genus. Genome, 1998, 41, 605-615.	2.0	33
28	The nature of extra-chromosomal maintenance of transforming plasmids in the filamentous basidiomycete Phanerochaete chrysosporium. Current Genetics, 1992, 21, 255-260.	1.7	25
29	Nitrogen-deregulated mutants of Phanerochaete chrysosporium ?a lignin-degrading basidiomycete. Archives of Microbiology, 1990, 153, 521-527.	2.2	37
30	Use of a shuttle vector for the transformation of the white rot basidiomycete, Phanerochaetechrysosporium. Biochemical and Biophysical Research Communications, 1989, 161, 720-725.	2.1	31