Miao-Chang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4599293/publications.pdf

Version: 2024-02-01

120 papers 3,404 citations

33 h-index 49 g-index

122 all docs 122 docs citations

122 times ranked

2678 citing authors

#	Article	IF	Citations
1	Excitation-dependent organic phosphors exhibiting different luminescence colors for information anti-counterfeiting. Chemical Engineering Journal, 2022, 429, 132288.	12.7	37
2	Protic acids as third components improve the phosphorescence properties of the guest-host system through hydrogen bonds. Chemical Engineering Journal, 2022, 433, 133530.	12.7	25
3	Stacking-dependent tetracolour luminescence and mechanofluorochromic properties of an isoquinoline derivative with aggregation-induced emission. Materials Chemistry Frontiers, 2022, 6, 459-465.	5.9	9
4	Tris(pentafluorophenyl)boraneâ€Catalyzed Oxygen Insertion Reaction of <i>α</i> â€Diazoesters (αâ€Diazoamides) with Dimethyl Sulfoxide. Advanced Synthesis and Catalysis, 2022, 364, 750-754.	4.3	5
5	Selenium atoms induce organic doped systems to produce pure phosphorescence emission. Chemical Communications, 2022, 58, 1179-1182.	4.1	17
6	Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging. Nature Communications, 2022, 13, 186.	12.8	175
7	Construction of Mechanofluorochromic and Aggregationâ€Induced Emission Materials Based on 4â€Substituted Isoquinoline Derivatives. Chemistry - an Asian Journal, 2022, 17, .	3.3	9
8	An (NH ₄) ₂ S ₂ O ₈ -promoted cross-coupling of thiols/diselenides and sulfoxides for the synthesis of unsymmetrical disulfides/selenosulfides. Chemical Communications, 2022, 58, 6550-6553.	4.1	7
9	1,7/8-Substituted isoquinoline derivatives: position isomerism caused by HIO ₃ -induced dehydrogenation and solid-state fluorescence stimulus-responsive properties. Journal of Materials Chemistry C, 2022, 10, 9875-9881.	5.5	5
10	Metalâ€Free Synthesis of Aryl Selenocyanates and Selenaheterocycles with Elemental Selenium. Chemistry - A European Journal, 2021, 27, 944-948.	3.3	28
11	Reversible photochromic properties of 4,5,6-triaryl-4 <i>H</i> -pyran derivatives in a solid state. Materials Chemistry Frontiers, 2021, 5, 3413-3421.	5.9	7
12	Cobalt-catalyzed selective hydroacylation of alkynes. Organic Chemistry Frontiers, 2021, 8, 6048-6052.	4.5	5
13	3,6-Diamino-7,8-dihydroisoquinoline-4-carbonitrile derivatives: unexpected facile synthesis, full-color-tunable solid-state emissions and mechanofluorochromic activities. Organic Chemistry Frontiers, 2021, 8, 856-867.	4.5	15
14	Palladium-catalyzed coupling reaction of 2-iodobiphenyls with alkenyl bromides for the construction of 9-(diorganomethylidene)fluorenes. Organic and Biomolecular Chemistry, 2021, 19, 8250-8253.	2.8	4
15	Excitation-Dependent Triplet–Singlet Intensity from Organic Host–Guest Materials: Tunable Color, White-Light Emission, and Room-Temperature Phosphorescence. Journal of Physical Chemistry Letters, 2021, 12, 1814-1821.	4.6	81
16	Synthesis, crystal structures and solid-state acidochromism of multiaryl-substituted pyridine derivatives with aggregation-induced emission property. Dyes and Pigments, 2021, 188, 109217.	3.7	12
17	Influence of Guest/Host Morphology on Room Temperature Phosphorescence Properties of Pure Organic Doped Systems. Journal of Physical Chemistry Letters, 2021, 12, 7357-7364.	4.6	26
18	Pyranone–Arylbenzene Molecules Controlled by the Competition of Local Excited State and Twisted Intramolecular Charge-Transfer State: Dual-State Emission, Polymorphism, and Mechanofluorochromism. Journal of Physical Chemistry C, 2021, 125, 16792-16802.	3.1	22

#	Article	IF	CITATIONS
19	Synthesis of [1,4]Thiazino[4,3- <i>a</i>)]indol-10-one Derivatives through Radical Anti Aza-Michael Addition of 2′-Aminochalcones. Organic Letters, 2021, 23, 6094-6098.	4.6	8
20	Catalyst and Additiveâ€Free Selective Ringâ€Opening Selenocyanation of Heterocycles with Elemental Selenium and TMSCN. Advanced Synthesis and Catalysis, 2021, 363, 1346-1351.	4.3	15
21	Ketone–enol tautomerism, polymorphism, mechanofluorochromism and solid-state acidochromism of isoquinolinone–arylidenehydrazine derivatives. Journal of Materials Chemistry C, 2021, 9, 12868-12876.	5.5	19
22	Pure room temperature phosphorescence emission of an organic host–guest doped system with a quantum efficiency of 64%. Journal of Materials Chemistry C, 2021, 9, 3391-3395.	5 . 5	52
23	Effect of Connecting Units on Aggregation-Induced Emission and Mechanofluorochromic Properties of Isoquinoline Derivatives with Malononitrile as the Terminal Group. Journal of Physical Chemistry C, 2021, 125, 24180-24188.	3.1	17
24	î±-Selective C(sp ³)â€"H Thio/Selenocyanation of Ketones with Elemental Chalcogen. Journal of Organic Chemistry, 2021, 86, 17294-17306.	3.2	14
25	Synthesis of Organoselenium Compounds with Elemental Selenium. Advanced Synthesis and Catalysis, 2021, 363, 5386-5406.	4.3	60
26	Cascade Ring-Opening Dual Halogenation of Cyclopropenones with Saturated Oxygen Heterocycles. Organic Letters, 2021, 23, 9425-9430.	4.6	6
27	Transition-metal-free synthesis of CMe2CF3-containing chroman-4-ones via decarboxylative trifluoroalkylation. Organic Chemistry Frontiers, 2020, 7, 487-491.	4.5	19
28	Synthesis, crystal structures, and mechanochromic properties of bulky trialkylsilylacetylene-substituted aggregation-induced-emission-active 1,4-dihydropyridine derivatives. Dyes and Pigments, 2020, 174, 108094.	3.7	4
29	Multifunctional properties of a star-shaped triphenylamine-benzene-1,3,5-tricarbohydrazide fluorescent molecule containing multiple flexible chains. Chemical Communications, 2020, 56, 13638-13641.	4.1	24
30	Tunable Phosphorescence/Fluorescence Dual Emissions of Organic Isoquinolineâ€Benzophenone Doped Systems by Alkoxy Engineering. Chemistry - A European Journal, 2020, 26, 17376-17380.	3.3	44
31	Ag2O-promoted ring-opening reactions of cyclopropenones with oximes. Organic and Biomolecular Chemistry, 2020, 18, 5822-5825.	2.8	9
32	Achieving crystal-induced room temperature phosphorescence and reversible photochromic properties by strong intermolecular interactions. Journal of Materials Chemistry C, 2020, 8, 17410-17416.	5.5	25
33	Agâ€Catalyzed Cyclization of Arylboronic Acids with Elemental Selenium for the Synthesis of Selenaheterocycles. Advanced Synthesis and Catalysis, 2020, 362, 5639-5644.	4.3	19
34	Efficient synthesis of 2-aryl-2 <i>H</i> -indazoles by base-catalyzed benzyl Câ€"H deprotonation and cyclization. Chemical Communications, 2020, 56, 14617-14620.	4.1	7
35	An Unexpected 4,5â€Diphenylâ€2,7â€naphthyridine Derivative with Aggregationâ€Induced Emission and Mechanofluorochromic Properties Obtained from a 3,5â€Diphenylâ€4 <i>H</i> àâ€pyran Derivative. Chemistry - an Asian Journal, 2020, 15, 3437-3443.	3.3	8
36	Three-Component Reactions of Alkynone <i>>o</i> -Methyloximes, Element Selenium, and Boronic Acids Leading to 4-Organoselenylisoxazoles. ACS Omega, 2020, 5, 23358-23363.	3.5	13

#	Article	IF	CITATIONS
37	Synthesis of selenated isochromenones by AgNO ₃ -catalyzed three-component reaction of alkynylaryl esters, selenium powder and ArB(OH) ₂ . RSC Advances, 2020, 10, 30439-30442.	3.6	14
38	Synthesis and photophysical and mechanochromic properties of novel 2,3,4,6-tetraaryl-4 <i>H</i> pyran derivatives. CrystEngComm, 2020, 22, 6529-6535.	2.6	6
39	Cu(l)/KOHâ€Promoted Condensation between <i>>o</i> >â€Arylenediamines and Nitroarenes to Access 2â€Arylâ€⊋ <i>H</i> à6€Benzotriazoles. Advanced Synthesis and Catalysis, 2020, 362, 2847-2851.	4.3	3
40	Selective [3 + 2] Cycloaddition of Cyclopropenone Derivatives and Elemental Chalcogens. Organic Letters, 2020, 22, 5555-5560.	4.6	30
41	Sequential C–S and S–N Coupling Approach to Sulfonamides. Organic Letters, 2020, 22, 1841-1845.	4.6	57
42	Cuâ€Catalyzed Radical Selenylation of Olefin: A Direct Access to Vinyl Selenides. Advanced Synthesis and Catalysis, 2020, 362, 2168-2172.	4.3	23
43	Metalâ€Free Facile Synthesis of Multisubstituted 1â€Aminoisoquinoline Derivatives with Dualâ€State Emissions. Chemistry - an Asian Journal, 2020, 15, 1692-1700.	3.3	26
44	Solid-state acidochromic properties of barbituric acid-based 1,4-dihydropyridine derivatives with multiple coloured emissions switching. Dyes and Pigments, 2019, 160, 378-385.	3.7	20
45	Selenium Radical Mediated Cascade Cyclization: Concise Synthesis of Selenated Benzofurans (Benzothiophenes). Organic Letters, 2019, 21, 6710-6714.	4.6	76
46	Well-Designed <i>N</i> -Heterocyclic Carbene Ligands for Palladium-Catalyzed Denitrative C–N Coupling of Nitroarenes with Amines. ACS Catalysis, 2019, 9, 8110-8115.	11.2	40
47	Sterically hindered N-heterocyclic carbene/palladium(<scp>ii</scp>) catalyzed Suzuki–Miyaura coupling of nitrobenzenes. Chemical Communications, 2019, 55, 9287-9290.	4.1	48
48	Polymorphism and Multicolor Mechanofluorochromism of a D-Ï€-A Asymmetric 4 <i>H</i> -Pyran Derivative with Aggregation-Induced Emission Property. Journal of Physical Chemistry C, 2019, 123, 27742-27751.	3.1	45
49	Photoinduced hydroxylation of arylboronic acids with molecular oxygen under photocatalyst-free conditions. Green Chemistry, 2019, 21, 4971-4975.	9.0	21
50	Photoinduced Hydroxylation of Organic Halides under Mild Conditions. Organic Letters, 2019, 21, 8479-8484.	4.6	13
51	A Photocleavable Amphiphilic Prodrug Self-Assembled Nanoparticles with Effective Anticancer Activity In Vitro. Nanomaterials, 2019, 9, 860.	4.1	11
52	Enhanced mechanofluorochromic properties of 1,4-dihydropyridine-based fluorescent molecules caused by the introduction of halogen atoms. CrystEngComm, 2019, 21, 4258-4266.	2.6	19
53	Low Molecular Weight Hydrogel for Super Efficient Separation of Small Organic Molecules Based on Size Effect. ACS Sustainable Chemistry and Engineering, 2019, 7, 11062-11068.	6.7	8
54	Synthesis of cyclic <i>gem</i> -dinitro compounds <i>via</i> radical nitration of 1,6-diynes with Fe(NO ₃) ₃ ·9H ₂ O. Organic and Biomolecular Chemistry, 2019, 17, 4725-4728.	2.8	6

#	Article	IF	CITATIONS
55	Catalyst-free oxidative N–N coupling for the synthesis of 1,2,3-triazole compounds with <i>t</i> BuONO. Organic Chemistry Frontiers, 2019, 6, 1481-1484.	4.5	22
56	Aggregationâ€Induced Emissionâ€Active 1,4â€Dihydropyridineâ€Based Dualâ€Phase Fluorescent Sensor with Multiple Functions. Chemistry - an Asian Journal, 2019, 14, 2242-2250.	3.3	13
57	Mechanofluorochromism, polymorphism and thermochromism of novel D–π–A piperidin-1-yl-substitued isoquinoline derivatives. Journal of Materials Chemistry C, 2019, 7, 12580-12587.	5 . 5	44
58	Synthesis of 3-HCF ₂ S-Chromones through Tandem Oxa-Michael Addition and Oxidative Difluoromethylthiolation. Organic Letters, 2019, 21, 9326-9329.	4.6	27
59	The effect of molecular symmetry on the mechanofluorochromic properties of 4H-pyran derivatives. Dyes and Pigments, 2019, 162, 203-213.	3.7	11
60	Palladium-Catalyzed Sequential Heteroarylation/Acylation Reactions of Iodobenzenes: Synthesis of Functionalized Benzo[d]oxazoles. Journal of Organic Chemistry, 2018, 83, 3354-3360.	3.2	15
61	Copper-catalyzed diarylation of Se with aryl iodides and heterocycles. Organic Chemistry Frontiers, 2018, 5, 1352-1355.	4.5	38
62	Metal-free synthesis of alkynyl alkyl selenides via three-component coupling of terminal alkynes, Se, and epoxides. Green Chemistry, 2018, 20, 1560-1563.	9.0	32
63	Effective structural modification of traditional fluorophores to obtain organic mechanofluorochromic molecules. Journal of Materials Chemistry C, 2018, 6, 5075-5096.	5. 5	127
64	Copper Mediated Threeâ€Component Reactions of Alkynes, Azides, and Propargylic Carbonates: Synthesis of 5â€Allenylâ€1,2,3â€Triazoles. Advanced Synthesis and Catalysis, 2018, 360, 2435-2439.	4.3	14
65	\hat{l}_{\pm},\hat{l}^2 -Diaryl unsaturated ketones <i>via</i> palladium-catalyzed ring-opening of cyclopropenones with organoboronic acids. Organic Chemistry Frontiers, 2018, 5, 1651-1654.	4.5	20
66	Synergistic Photo-Copper-Catalyzed Hydroxylation of (Hetero)aryl Halides with Molecular Oxygen. Organic Letters, 2018, 20, 708-711.	4.6	23
67	Direct synthesis of 3-acylbenzothiophenes $\langle i \rangle$ via $\langle i \rangle$ the radical cyclization of 2-alkynylthioanisoles with \hat{l} ±-oxocarboxylic acids. Chemical Communications, 2018, 54, 14148-14151.	4.1	30
68	Catalystâ€Controlled Regioselective Synthesis of αâ€Amino Oxime Esters from <i>N</i> â€(Acyloxy)amides and 2 <i>H</i> â€Azirines. European Journal of Organic Chemistry, 2018, 2018, 5553-5557.	2.4	4
69	Base-Controlled Three Component Reactions of Amines, Elemental Sulfur, and Styrenes: Synthesis of Thioamides under Metal-Free Conditions. Journal of Organic Chemistry, 2018, 83, 14269-14276.	3.2	21
70	Silverâ€Catalyzed Oneâ€Pot Threeâ€Component Selective Synthesis of βâ€Hydroxy Selenides. Advanced Synthesis and Catalysis, 2018, 360, 4336-4340.	4.3	44
71	Transition-Metal-Free Highly Chemoselective and Stereoselective Reduction with Se/DMF/H2O System. Organic Letters, 2018, 20, 5573-5577.	4.6	33
72	Copper(I)-Catalyzed N–O Bond Formation through Vinyl Nitrene Mediated Pathway under Mild Conditions. Journal of Organic Chemistry, 2018, 83, 5999-6005.	3.2	13

#	Article	IF	CITATIONS
73	Effective combination therapy of percutaneous ethanol injection and chemotherapy based on injectable low molecular weight gels. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 683-693.	2.8	6
74	Palladium-catalyzed oxidative C bond cleavage with molecular oxygen: one-pot synthesis of quinazolinones from 2-amino benzamides and alkenes. Organic Chemistry Frontiers, 2018, 5, 2734-2738.	4.5	21
75	Mechanochromic and acidochromic response of 4H-pyran derivatives with aggregation-induced emission properties. Dyes and Pigments, 2017, 141, 428-440.	3.7	48
76	Polymorphism and mechanochromism of N-alkylated 1,4-dihydropyridine derivatives containing different electron-withdrawing end groups. Journal of Materials Chemistry C, 2017, 5, 5183-5192.	5.5	45
77	Copper-Catalyzed Three-Component Coupling Reaction of Azoles, Se Powder, and Aryl Iodides. Journal of Organic Chemistry, 2017, 82, 250-255.	3.2	67
78	Copper-catalyzed C–O bond cleavage and cyclization: synthesis of indazolo[3,2-b]quinazolinones. Organic and Biomolecular Chemistry, 2017, 15, 2168-2173.	2.8	15
79	Regioselective C–H chlorination: towards the sequential difunctionalization of phenol derivatives and late-stage chlorination of bioactive compounds. RSC Advances, 2017, 7, 46636-46643.	3.6	10
80	Mechanofluorochromic properties of fluorescent molecules based on a dicyanomethylene-4H-pyran and indole isomer containing different alkyl chains via an alkene module. RSC Advances, 2017, 7, 42180-42191.	3.6	19
81	5-(2,6-Bis((E)-4-(dimethylamino)styryl)-1-ethylpyridin-4(1H)-ylidene)-2,2-dimethyl-1,3-dioxane-4,6-dione: aggregation-induced emission, polymorphism, mechanochromism, and thermochromism. Journal of Materials Chemistry C, 2017, 5, 9264-9272.	5.5	45
82	Copper-catalyzed <i>ipso</i> -selenation of aromatic carboxylic acids. Organic and Biomolecular Chemistry, 2017, 15, 9718-9726.	2.8	25
83	The influence of different N-substituted groups on the mechanochromic properties of 1,4-dihydropyridine derivatives with simple structures. RSC Advances, 2017, 7, 51444-51451.	3.6	12
84	Copper-Catalyzed Three-Component Reaction for Regioselective Aryl- and Heteroarylselenation of Indoles using Selenium Powder. Journal of Organic Chemistry, 2016, 81, 4485-4493.	3.2	109
85	The effect of N-alkyl chain length on the photophysical properties of indene-1,3-dionemethylene-1,4-dihydropyridine derivatives. Journal of Materials Chemistry C, 2016, 4, 5970-5980.	5.5	33
86	Copper-Catalyzed Oxirane-Opening Reaction with Aryl lodides and Se Powder. Journal of Organic Chemistry, 2016, 81, 7584-7590.	3.2	39
87	Piezochromism, acidochromism, solvent-induced emission changes and cell imaging of D-Ï€-A 1,4-dihydropyridine derivatives with aggregation-induced emission properties. Dyes and Pigments, 2016, 133, 261-272.	3.7	38
88	Enhancement of N-heterocyclic carbenes on rhodium catalyzed olefination of triazoles. Organic and Biomolecular Chemistry, 2016, 14, 2550-2555.	2.8	12
89	Indene-1,3-dionemethylene-4H-pyran derivatives containing alkoxy chains of various lengths: aggregation-induced emission enhancement, mechanofluorochromic properties and solvent-induced emission changes. Journal of Materials Chemistry C, 2016, 4, 2862-2870.	5.5	68
90	Dual pH and temperature responsive hydrogels based on \hat{l}^2 -cyclodextrin derivatives for atorvastatin delivery. Carbohydrate Polymers, 2016, 136, 300-306.	10.2	41

#	Article	IF	CITATIONS
91	Copper/Selectfluorâ€Systemâ€Catalyzed Dehydration–Oxidation of Tertiary CycloÂalcohols: Access to βâ€Substituted Cyclohexâ€2â€enones, 4â€Arylcoumarins, and BiÂaryls. European Journal of Organic Chemistry, 2015, 2015, 5381-5388.	2.4	21
92	Efficient Approach to Mesoionic Triazolo[5,1-a]isoquinolium through Rhodium-Catalyzed Annulation of Triazoles and Internal Alkynes. Organic Letters, 2015, 17, 2828-2831.	4.6	48
93	Multi-Stimulus-Responsive Fluorescent Properties of Donor-Ï€-Acceptor Indene-1,3-dionemethylene-1,4-dihydropyridine Derivatives. Journal of Physical Chemistry C, 2015, 119, 23138-23148.	3.1	82
94	Palladium-Catalyzed Cascade Reaction of 2-Amino- $\langle i \rangle N \langle i \rangle \hat{a} \in 2$ -arylbenzohydrazides with Triethyl Orthobenzoates To Construct Indazolo [3,2- $\langle i \rangle b \langle i \rangle$] quinazolinones. Journal of Organic Chemistry, 2015, 80, 482-489.	3.2	44
95	D-ï∈-A benzo[c][1,2,5]selenadiazole-based derivatives via an ethynyl bridge: Photophysical properties, solvatochromism and applications as fluorescent sensors. Dyes and Pigments, 2015, 112, 105-115.	3.7	23
96	A Novel Dâ€ï€â€A Conjugated Polymer Chemosensor Based on Benzo[<i>c</i>][1,2,5]selenadiazole for Highly Selective and Sensitive Recognition of Mercury (II) Ions. Macromolecular Chemistry and Physics, 2014, 215, 82-89.	2.2	27
97	Activation of Dioxygen in Air by a Phenol/Selectfluor System: An Application in the Oxidationâ€Dimerization of Alkynes to 2â€Eneâ€1,4â€diones. Asian Journal of Organic Chemistry, 2014, 3, 1163-1167.	2.7	5
98	Highly sensitive conjugated polymer fluorescent sensors based on benzochalcogendiazole for nickel ions in real-time detection. Journal of Materials Chemistry C, 2014, 2, 7402-7410.	5. 5	39
99	Unexpected TFA-catalyzed tandem reaction of benzo[d]oxazoles with 2-oxo-2-arylacetic acids: synthesis of 3-aryl-2H-benzo[b][1,4]oxazin-2-ones and cephalandole A. RSC Advances, 2014, 4, 16705-16709.	3.6	19
100	Palladium-Catalyzed Reaction of Arylboronic Acids with Aliphatic Nitriles: Synthesis of Alkyl Aryl Ketones and 2-Arylbenzofurans. Synthesis, 2013, 45, 2241-2244.	2.3	28
101	Catalystâ€Free Protocol for the Synthesis of Quinoxalines and Pyrazines in PEG. Journal of Heterocyclic Chemistry, 2013, 50, 293-297.	2.6	11
102	Copper-catalyzed sequential arylation and intramolecular annulation of 2-(2-bromophenyl)-2,3-dihydroquinazolin-4(1H)-ones with amidines. RSC Advances, 2013, 3, 24001.	3.6	8
103	Palladium-Catalysed Addition of Potassium Phenyltrifluoroborate to Dinitriles: Synthesis of Diketone Compounds. Journal of Chemical Research, 2013, 37, 470-472.	1.3	1
104	Ligand-Free Palladium-Catalysed Oxidative Heck Reaction of 4-Vinylpyridine with Arylboronic Acids: Selective Synthesis of (E)-4-Styrylpyridines. Journal of Chemical Research, 2012, 36, 322-325.	1.3	4
105	Ligand-free copper-catalyzed coupling of nitroarenes with arylboronic acids. Green Chemistry, 2012, 14, 912.	9.0	74
106	Tandem synthesis of 2,3â€dihydroquinazolinâ€4(1 <i>H</i>)â€ones on grinding under solventâ€free conditions. Journal of Heterocyclic Chemistry, 2012, 49, 375-380.	2.6	33
107	Palladiumâ€Catalyzed Aerobic Oxidative Coupling of Acyl Chlorides with Arylboronic Acids. Advanced Synthesis and Catalysis, 2012, 354, 2117-2122.	4.3	23
108	A Metalâ€Free Sulfenylation and Bromosulfenylation of Indoles: Controllable Synthesis of 3â€Arylthioindoles and 2â€Bromoâ€3â€arylthioindoles. Advanced Synthesis and Catalysis, 2012, 354, 2123-2128	3. ^{4.3}	117

#	Article	IF	CITATIONS
109	Copperâ€catalyzed Clauson–Kass pyrroles synthesis in aqueous media. Applied Organometallic Chemistry, 2012, 26, 164-167.	3.5	26
110	NBSâ€Promoted Sulfenylation of Sulfinates with Disulfides Leading to Unsymmetrical or Symmetrical Thiosulfonates. Chinese Journal of Chemistry, 2012, 30, 1611-1616.	4.9	51
111	The Coupling of Arylboronic Acids with Nitroarenes Catalyzed by Rhodium. Organic Letters, 2011, 13, 1726-1729.	4.6	63
112	Ecoâ€friendly synthesis of quinoxaline derivatives by grinding under solventâ€free conditions. Journal of Heterocyclic Chemistry, 2011, 48, 403-406.	2.6	22
113	Synthesis and Biological Activities of New Chiral Imidazolinone Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 185, 117-128.	1.6	4
114	Efficient and Expeditious Synthesis of Di- and Trisubstituted Thiazoles in PEG Under Catalyst-Free Conditions. Synthetic Communications, 2009, 39, 2895-2906.	2.1	38
115	Approach to Synthesis of \hat{l}^2 -Enamino Ketones and Pyrroles Catalyzed by Gallium(III) Triflate Under Solvent-Free Conditions. Synthetic Communications, 2009, 39, 4180-4198.	2.1	24
116	An Approach to Disulfide Synthesis Promoted by Sulfonyl Chloride in Sodium Bicarbonate Aqueous Media. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 184, 2553-2559.	1.6	17
117	Cu(OAc) ₂ -Catalyzed <i>N</i> -Arylation of Sulfonamides with Arylboronic Acids or Trimethoxy(phenyl)silane. Synthetic Communications, 2009, 39, 2082-2092.	2.1	30
118	Scandium triflate-catalysed synthesis of $\langle i \rangle N \langle i \rangle$ -substituted pyrroles from amine and 2,5-dimethoxytetrahydrofuran. Journal of Chemical Research, 2009, 2009, 14-16.	1.3	18
119	Synthesis of fluorinated \hat{l}^2 -carbolines by one-pot reaction. Journal of Chemical Research, 2008, 2008, 696-698.	1.3	1
120	Direct dilithiation of N-aryl heterocycles for the construction of condensed N-heterocycles. Organic Chemistry Frontiers, 0, , .	4.5	0