Fanny de Busserolles

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4599148/publications.pdf

Version: 2024-02-01

516215 676716 22 833 16 22 citations g-index h-index papers 28 28 28 852 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Vision using multiple distinct rod opsins in deep-sea fishes. Science, 2019, 364, 588-592.	6.0	151
2	Biodiversity patterns, environmental drivers and indicator species on a high-temperature hydrothermal edifice, Mid-Atlantic Ridge. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 121, 177-192.	0.6	76
3	Are spatial variations in the diets of hydrothermal fauna linked to local environmental conditions?. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 1649-1664.	0.6	73
4	Colours and colour vision in reef fishes: Past, present and future research directions. Journal of Fish Biology, 2019, 95, 5-38.	0.7	58
5	Pushing the limits of photoreception in twilight conditions: The rod-like cone retina of the deep-sea pearlsides. Science Advances, 2017, 3, eaao4709.	4.7	55
6	Eye-Size Variability in Deep-Sea Lanternfishes (Myctophidae): An Ecological and Phylogenetic Study. PLoS ONE, 2013, 8, e58519.	1.1	49
7	Retinal specialization through spatially varying cell densities and opsin coexpression in cichlid fish. Journal of Experimental Biology, 2017, 220, 266-277.	0.8	40
8	The exceptional diversity of visual adaptations in deep-sea teleost fishes. Seminars in Cell and Developmental Biology, 2020, 106, 20-30.	2.3	36
9	Seeing in the deep-sea: visual adaptations in lanternfishes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160070.	1.8	34
10	Visual system diversity in coral reef fishes. Seminars in Cell and Developmental Biology, 2020, 106, 31-42.	2.3	34
11	Biological data extraction from imagery – How far can we go? A case study from the Mid-Atlantic Ridge. Marine Environmental Research, 2012, 82, 15-27.	1.1	33
12	The Influence of Photoreceptor Size and Distribution on Optical Sensitivity in the Eyes of Lanternfishes (Myctophidae). PLoS ONE, 2014, 9, e99957.	1.1	31
13	A detailed investigation of the visual system and visual ecology of the Barrier Reef anemonefish, Amphiprion akindynos. Scientific Reports, 2019, 9, 16459.	1.6	27
14	Retinal Ganglion Cell Distribution and Spatial Resolving Power in Deep-Sea Lanternfishes (Myctophidae). Brain, Behavior and Evolution, 2014, 84, 262-276.	0.9	26
15	The eyes of lanternfishes (Myctophidae, Teleostei): Novel ocular specializations for vision in dim light. Journal of Comparative Neurology, 2014, 522, 1618-1640.	0.9	24
16	Visual system development of the spotted unicornfish, <i>Naso brevirostris</i> (Acanthuridae). Journal of Experimental Biology, 2019, 222, .	0.8	20
17	Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter. Brain, Behavior and Evolution, 2015, 85, 77-93.	0.9	17
18	Microhabitat partitioning correlates with opsin gene expression in coral reef cardinalfishes (Apogonidae). Functional Ecology, 2020, 34, 1041-1052.	1.7	13

#	Article	IF	CITATIONS
19	The visual ecology of Holocentridae, a nocturnal coral reef fish family with a deep-sea-like multibank retina. Journal of Experimental Biology, 2021, 224, .	0.8	12
20	Seeing Picasso: an investigation into the visual system of the triggerfish <i>Rhinecanthus aculeatus </i> . Journal of Experimental Biology, 2022, 225, .	0.8	8
21	Retinal Ganglion Cell Topography and Spatial Resolving Power in Echolocating and Non-Echolocating Bats. Brain, Behavior and Evolution, 2020, 95, 58-68.	0.9	3
22	Sex differences in behavioural and anatomical estimates of visual acuity in the green swordtail Xiphophorus helleri. Journal of Experimental Biology, 2021, , .	0.8	2