
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4599146/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chaotic neural networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 1990, 144, 333-340.	0.9	1,150
2	Chaotic simulated annealing by a neural network model with transient chaos. Neural Networks, 1995, 8, 915-930.	3.3	631
3	Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers. Scientific Reports, 2012, 2, 342.	1.6	494
4	A coherent Ising machine for 2000-node optimization problems. Science, 2016, 354, 603-606.	6.0	469
5	A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science, 2016, 354, 614-617.	6.0	427
6	Stability of genetic regulatory networks with time delay. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 602-608.	0.1	364
7	Associative Dynamics in a Chaotic Neural Network. Neural Networks, 1997, 10, 83-98.	3.3	357
8	Early Diagnosis of Complex Diseases by Molecular Biomarkers, Network Biomarkers, and Dynamical Network Biomarkers. Medicinal Research Reviews, 2014, 34, 455-478.	5.0	252
9	Dynamical Cell Assembly Hypothesis — Theoretical Possibility of Spatio-temporal Coding in the Cortex. Neural Networks, 1996, 9, 1303-1350.	3.3	251
10	Personalized characterization of diseases using sample-specific networks. Nucleic Acids Research, 2016, 44, e164-e164.	6.5	226
11	Cryptosystems with discretized chaotic maps. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 28-40.	0.1	221
12	Chaos and phase locking in normal squid axons. Physics Letters, Section A: General, Atomic and Solid State Physics, 1987, 123, 162-166.	0.9	173
13	Periodic and non-periodic responses of a periodically forced Hodgkin-Huxley oscillator. Journal of Theoretical Biology, 1984, 109, 249-269.	0.8	162
14	Non-Gaussian power grid frequency fluctuations characterized by Lévy-stable laws and superstatistics. Nature Energy, 2018, 3, 119-126.	19.8	158
15	Identifying critical transitions and their leading biomolecular networks in complex diseases. Scientific Reports, 2012, 2, 813.	1.6	155
16	Bayesian Inference Explains Perception of Unity and Ventriloquism Aftereffect: Identification of Common Sources of Audiovisual Stimuli. Neural Computation, 2007, 19, 3335-3355.	1.3	151
17	Molecular Communication through Stochastic Synchronization Induced by Extracellular Fluctuations. Physical Review Letters, 2005, 95, 178103.	2.9	138
18	Chaos and asymptotical stability in discrete-time neural networks. Physica D: Nonlinear Phenomena, 1997, 104, 286-325.	1.3	137

#	Article	IF	CITATIONS
19	Potential anti-COVID-19 agents, cepharanthine and nelfinavir, and their usage for combination treatment. IScience, 2021, 24, 102367.	1.9	126
20	A Mathematical Model of Intermittent Androgen Suppression for Prostate Cancer. Journal of Nonlinear Science, 2008, 18, 593-614.	1.0	125
21	Complex-valued forecasting of wind profile. Renewable Energy, 2006, 31, 1733-1750.	4.3	122
22	Synchronization of coupled nonidentical genetic oscillators. Physical Biology, 2006, 3, 37-44.	0.8	120
23	Development of a mathematical model that predicts the outcome of hormone therapy for prostate cancer. Journal of Theoretical Biology, 2010, 264, 517-527.	0.8	120
24	Coherent Ising machines—optical neural networks operating at the quantum limit. Npj Quantum Information, 2017, 3, .	2.8	120
25	Uncovering signal transduction networks from high-throughput data by integer linear programming. Nucleic Acids Research, 2008, 36, e48-e48.	6.5	118
26	Global searching ability of chaotic neural networks. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 1999, 46, 974-993.	0.1	113
27	Protein classification with imbalanced data. Proteins: Structure, Function and Bioinformatics, 2008, 70, 1125-1132.	1.5	109
28	Complex-valued prediction of wind profile using augmented complex statistics. Renewable Energy, 2009, 34, 196-201.	4.3	104
29	Dynamical robustness in complex networks: the crucial role of low-degree nodes. Scientific Reports, 2012, 2, 232.	1.6	101
30	A quantitative model used to compare within-host SARS-CoV-2, MERS-CoV, and SARS-CoV dynamics provides insights into the pathogenesis and treatment of SARS-CoV-2. PLoS Biology, 2021, 19, e3001128.	2.6	99
31	Chaos engineering and its application to parallel distributed processing with chaotic neural networks. Proceedings of the IEEE, 2002, 90, 919-930.	16.4	98
32	Combination of Chaotic Neurodynamics with the 2-opt Algorithm to Solve Traveling Salesman Problems. Physical Review Letters, 1997, 79, 2344-2347.	2.9	95
33	Global bifurcation structure of chaotic neural networks and its application to traveling salesman problems. Neural Networks, 1997, 10, 1673-1690.	3.3	94
34	Detection for disease tipping points by landscape dynamic network biomarkers. National Science Review, 2019, 6, 775-785.	4.6	94
35	Structures of attractors in periodically forced neural oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1986, 116, 313-317.	0.9	93
36	Chaos engineering in Japan. Communications of the ACM, 1995, 38, 103-107.	3.3	90

#	Article	IF	CITATIONS
37	Theory of hybrid dynamical systems and its applications to biological and medical systems. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 4893-4914.	1.6	90
38	Quantifying critical states of complex diseases using single-sample dynamic network biomarkers. PLoS Computational Biology, 2017, 13, e1005633.	1.5	90
39	12. Chaotic oscillations and bifurcations in squid giant axons. , 1986, , 257-270.		83
40	A model of periodic oscillation for genetic regulatory systems. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2002, 49, 1429-1436.	0.1	83
41	Noise-induced cooperative behavior in a multicell system. Bioinformatics, 2005, 21, 2722-2729.	1.8	82
42	Identifying critical transitions of complex diseases based on a single sample. Bioinformatics, 2014, 30, 1579-1586.	1.8	82
43	Solving large scale traveling salesman problems by chaotic neurodynamics. Neural Networks, 2002, 15, 271-283.	3.3	80
44	Identifying early-warning signals of critical transitions with strong noise by dynamical network markers. Scientific Reports, 2015, 5, 17501.	1.6	80
45	APOBEC3D and APOBEC3F Potently Promote HIV-1 Diversification and Evolution in Humanized Mouse Model. PLoS Pathogens, 2014, 10, e1004453.	2.1	79
46	Mathematical modelling of prostate cancer growth and its application to hormone therapy. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 5029-5044.	1.6	78
47	Quaternion-valued short-term joint forecasting of three-dimensional wind and atmospheric parameters. Renewable Energy, 2011, 36, 1754-1760.	4.3	78
48	Model Reduction and Clusterization of Large-Scale Bidirectional Networks. IEEE Transactions on Automatic Control, 2014, 59, 48-63.	3.6	76
49	An alternating periodic-chaotic sequence observed in neural oscillators. Physics Letters, Section A: General, Atomic and Solid State Physics, 1985, 111, 251-255.	0.9	75
50	Gene function prediction using labeled and unlabeled data. BMC Bioinformatics, 2008, 9, 57.	1.2	74
51	Modeling Biomolecular Networks in Cells. , 2010, , .		74
52	Detecting Causality from Nonlinear Dynamics with Short-term Time Series. Scientific Reports, 2014, 4, 7464.	1.6	73
53	Reproduction of distance matrices and original time series from recurrence plots and their applications. European Physical Journal: Special Topics, 2008, 164, 13-22.	1.2	65
54	Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes. Quantitative Biology, 2013, 1, 105-114.	0.3	62

#	Article	IF	CITATIONS
55	Destabilization of Local Minima in Analog Spin Systems by Correction of Amplitude Heterogeneity. Physical Review Letters, 2019, 122, 040607.	2.9	57
56	Hunt for the tipping point during endocrine resistance process in breast cancer by dynamic network biomarkers. Journal of Molecular Cell Biology, 2019, 11, 649-664.	1.5	57
57	Neuron-synapse ic chip-set for large-scale chaotic neural networks. IEEE Transactions on Neural Networks, 2003, 14, 1393-1404.	4.8	55
58	Amoeba-based neurocomputing with chaotic dynamics. Communications of the ACM, 2007, 50, 69-72.	3.3	55
59	Spatio-Temporal Dynamics in Collective Frog Choruses Examined by Mathematical Modeling and Field Observations. Scientific Reports, 2014, 4, 3891.	1.6	55
60	Bridging Rate Coding and Temporal Spike Coding by Effect of Noise. Physical Review Letters, 2002, 88, 248101.	2.9	54
61	A CMOS Spiking Neural Network Circuit with Symmetric/Asymmetric STDP Function. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2009, E92-A, 1690-1698.	0.2	52
62	Controlling a chaotic neural network for information processing. Neurocomputing, 2013, 110, 111-120.	3.5	51
63	Dynamical robustness of coupled heterogeneous oscillators. Physical Review E, 2014, 89, 052906.	0.8	51
64	A method to determine the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain. Scientific Reports, 2015, 5, 10371.	1.6	51
65	Randomly distributed embedding making short-term high-dimensional data predictable. Proceedings of the United States of America, 2018, 115, E9994-E10002.	3.3	51
66	Pulse propagation networks: A neural network model that uses temporal coding by action potentials. Neural Networks, 1993, 6, 203-215.	3.3	50
67	Identifying hidden common causes from bivariate time series: A method using recurrence plots. Physical Review E, 2010, 81, 016203.	0.8	50
68	Autoreservoir computing for multistep ahead prediction based on the spatiotemporal information transformation. Nature Communications, 2020, 11, 4568.	5.8	49
69	The role of chaotic resonance in cerebellar learning. Neural Networks, 2010, 23, 836-842.	3.3	48
70	Deterministic prediction and chaos in squid axon response. Physics Letters, Section A: General, Atomic and Solid State Physics, 1992, 169, 41-45.	0.9	47
71	Array-enhanced coherence resonance and forced dynamics in coupled FitzHugh-Nagumo neurons with noise. Physical Review E, 2002, 65, 051906.	0.8	47
72	Dynamics of gene regulatory networks with cell division cycle. Physical Review E, 2004, 70, 011909.	0.8	47

#	Article	IF	CITATIONS
73	A nonlinear model with competition between prostate tumor cells and its application to intermittent androgen suppression therapy of prostate cancer. Mathematical Biosciences, 2008, 214, 134-139.	0.9	47
74	Partial cross mapping eliminates indirect causal influences. Nature Communications, 2020, 11, 2632.	5.8	47
75	BIFURCATIONS IN TWO-DIMENSIONAL HINDMARSH–ROSE TYPE MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 985-998.	0.7	46
76	Duality of Rate Coding and Temporal Coding in Multilayered Feedforward Networks. Neural Computation, 2003, 15, 103-125.	1.3	45
77	Adaptive annealing for chaotic optimization. Physical Review E, 1998, 58, 5157-5160.	0.8	44
78	Time series analysis and prediction on complex dynamical behavior observed in a blast furnace. Physica D: Nonlinear Phenomena, 2000, 135, 305-330.	1.3	43
79	Identifying pre-disease signals before metabolic syndrome in mice by dynamical network biomarkers. Scientific Reports, 2019, 9, 8767.	1.6	43
80	Associative memory with a controlled chaotic neural network. Neurocomputing, 2008, 71, 2794-2805.	3.5	42
81	Clustered model reduction of positive directed networks. Automatica, 2015, 59, 238-247.	3.0	42
82	Temporally coherent organization and instabilities in squid giant axons. Journal of Theoretical Biology, 1982, 95, 697-720.	0.8	41
83	DEFINITION OF DISTANCE FOR MARKED POINT PROCESS DATA AND ITS APPLICATION TO RECURRENCE PLOT-BASED ANALYSIS OF EXCHANGE TICK DATA OF FOREIGN CURRENCIES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 3699-3708.	0.7	41
84	Coherent Response in a Chaotic Neural Network. Neural Processing Letters, 2000, 12, 49-58.	2.0	40
85	Mathematical modeling of frogs' calling behavior and its possible application to artificial life and robotics. Artificial Life and Robotics, 2008, 12, 29-32.	0.7	40
86	Combinatorial optimization using dynamical phase transitions in driven-dissipative systems. Physical Review E, 2017, 95, 022118.	0.8	40
87	Random and Targeted Interventions for Epidemic Control in Metapopulation Models. Scientific Reports, 2015, 4, 5522.	1.6	39
88	Transient Resetting: A Novel Mechanism for Synchrony and Its Biological Examples. PLoS Computational Biology, 2006, 2, e103.	1.5	38
89	Bifurcation analysis on a hybrid systems model of intermittent hormonal therapy for prostate cancer. Physica D: Nonlinear Phenomena, 2008, 237, 2616-2627.	1.3	38
90	Chaos and Its Applications. Procedia IUTAM, 2012, 5, 199-203.	1.2	38

#	Article	IF	CITATIONS
91	Photoplethysmogram at green light: Where does chaos arise from?. Chaos, Solitons and Fractals, 2018, 116, 157-165.	2.5	38
92	A discriminative approach for identifying domain–domain interactions from protein–protein interactions. Proteins: Structure, Function and Bioinformatics, 2010, 78, 1243-1253.	1.5	37
93	Stability and bifurcation analysis of differential-difference-algebraic equations. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2001, 48, 308-326.	0.1	36
94	Analog computation through high-dimensional physical chaotic neuro-dynamics. Physica D: Nonlinear Phenomena, 2008, 237, 1215-1225.	1.3	36
95	Amoeba-based Chaotic Neurocomputing: Combinatorial Optimization by Coupled Biological Oscillators. New Generation Computing, 2009, 27, 129-157.	2.5	36
96	Performance evaluation of coherent Ising machines against classical neural networks. Quantum Science and Technology, 2017, 2, 044002.	2.6	34
97	Protein function prediction with high-throughput data. Amino Acids, 2008, 35, 517-530.	1.2	33
98	Identifying critical differentiation state of MCF-7 cells for breast cancer by dynamical network biomarkers. Frontiers in Genetics, 2015, 6, 252.	1.1	33
99	Quantum model for coherent Ising machines: Discrete-time measurement feedback formulation. Physical Review A, 2017, 96, .	1.0	33
100	Reconstructing state spaces from multivariate data using variable delays. Physical Review E, 2006, 74, 026202.	0.8	32
101	Quantitative mathematical modeling of PSA dynamics of prostate cancer patients treated with intermittent androgen suppression. Journal of Molecular Cell Biology, 2012, 4, 127-132.	1.5	32
102	Detection of significant antiviral drug effects on COVID-19 with reasonable sample sizes in randomized controlled trials: A modeling study. PLoS Medicine, 2021, 18, e1003660.	3.9	32
103	Modeling and Analyzing Biological Oscillations in Molecular Networks. Proceedings of the IEEE, 2008, 96, 1361-1385.	16.4	31
104	Piecewise affine systems modelling for optimizing hormone therapy of prostate cancer. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 5045-5059.	1.6	31
105	Dynamics between order and chaos in conceptual models of glacial cycles. Climate Dynamics, 2014, 42, 3087-3099.	1.7	31
106	Boltzmann Sampling by Degenerate Optical Parametric Oscillator Network for Structure-Based Virtual Screening. Entropy, 2016, 18, 365.	1.1	31
107	A mixed analog/digital chaotic neuro-computer system for quadratic assignment problems. Neural Networks, 2005, 18, 505-513.	3.3	30
108	Threshold control of chaotic neural network. Neural Networks, 2008, 21, 114-121.	3.3	30

#	Article	IF	CITATIONS
109	Chaotic Boltzmann machines. Scientific Reports, 2013, 3, 1610.	1.6	30
110	Hybrid optimal scheduling for intermittent androgen suppression of prostate cancer. Chaos, 2010, 20, 045125.	1.0	29
111	Improving time series prediction of solar irradiance after sunrise: Comparison among three methods for time series prediction. Solar Energy, 2017, 149, 294-301.	2.9	29
112	Dynamical network biomarkers: Theory and applications. Gene, 2022, 808, 145997.	1.0	29
113	Analysis of neural spike trains with interspike interval reconstruction. Biological Cybernetics, 2000, 82, 305-311.	0.6	28
114	Surrogate analysis for detecting nonlinear dynamics in normal vowels. Journal of the Acoustical Society of America, 2001, 110, 3207-3217.	0.5	28
115	Strange attractors in chaotic neural networks. IEEE Transactions on Circuits and Systems Part 1: Regular Papers, 2000, 47, 1455-1468.	0.1	27
116	Model predictive control for optimally scheduling intermittent androgen suppression of prostate cancer. Methods, 2014, 67, 278-281.	1.9	27
117	Understanding migraine using dynamic network biomarkers. Cephalalgia, 2015, 35, 627-630.	1.8	27
118	A SIMPLE GEOMETRICAL STRUCTURE UNDERLYING SPEECH SIGNALS OF THE JAPANESE VOWEL /a/. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1996, 06, 149-160.	0.7	26
119	Nonlinear Neurodynamics and Combinatorial Optimization in Chaotic Neural Networks. Journal of Intelligent and Fuzzy Systems, 1997, 5, 53-68.	0.8	26
120	A Mathematical Model of Prostate Tumor Growth Under Hormone Therapy with Mutation Inhibitor. Journal of Nonlinear Science, 2010, 20, 219-240.	1.0	26
121	Detecting Causality by Combined Use of Multiple Methods: Climate and Brain Examples. PLoS ONE, 2016, 11, e0158572.	1.1	26
122	MATHEMATICAL MODELING OF PROSTATE TUMOR GROWTH UNDER INTERMITTENT ANDROGEN SUPPRESSION WITH PARTIAL DIFFERENTIAL EQUATIONS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2008, 18, 3789-3797.	0.7	25
123	Robustness of Oscillatory Behavior in Correlated Networks. PLoS ONE, 2015, 10, e0123722.	1.1	25
124	A dynamic neural network with temporal coding and functional connectivity. Biological Cybernetics, 1998, 78, 87-93.	0.6	24
125	BIFURCATIONS IN SYNAPTICALLY COUPLED HODGKIN–HUXLEY NEURONS WITH A PERIODIC INPUT. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 653-666.	0.7	24
126	A partial differential equation model and its reduction to an ordinary differential equation model for prostate tumor growth under intermittent hormone therapy. Journal of Mathematical Biology, 2014, 69, 817-838.	0.8	24

#	Article	IF	CITATIONS
127	Predicting local COVID-19 outbreaks and infectious disease epidemics based on landscape network entropy. Science Bulletin, 2021, 66, 2265-2270.	4.3	24
128	Synchronization of Eukaryotic Cells by Periodic Forcing. Physical Review Letters, 2006, 96, 148102.	2.9	23
129	Timing matters in foreign exchange markets. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 760-766.	1.2	23
130	Qualitative-Modeling-Based Silicon Neurons and Their Networks. Frontiers in Neuroscience, 2016, 10, 273.	1.4	23
131	Deformation of Attractor Landscape via Cholinergic Presynaptic Modulations: A Computational Study Using a Phase Neuron Model. PLoS ONE, 2013, 8, e53854.	1.1	22
132	Quantum model for coherent Ising machines: Stochastic differential equations with replicator dynamics. Physical Review A, 2017, 96, .	1.0	22
133	Development and Applications of Biomimetic Neuronal Networks Toward BrainMorphic Artificial Intelligence. IEEE Transactions on Circuits and Systems II: Express Briefs, 2018, 65, 577-581.	2.2	22
134	Chaos in Neural Networks Composed of Coincidence Detector Neurons. Neural Networks, 1997, 10, 1353-1359.	3.3	21
135	Personalizing Androgen Suppression for Prostate Cancer Using Mathematical Modeling. Scientific Reports, 2018, 8, 2673.	1.6	21
136	Predicting future dynamics from short-term time series using an Anticipated Learning Machine. National Science Review, 2020, 7, 1079-1091.	4.6	21
137	Ergodicity of Spike Trains: When Does Trial Averaging Make Sense?. Neural Computation, 2003, 15, 1341-1372.	1.3	20
138	Protein domain annotation with integration of heterogeneous information sources. Proteins: Structure, Function and Bioinformatics, 2008, 72, 461-473.	1.5	20
139	Wind direction modelling using multiple observation points. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 591-607.	1.6	20
140	AUTOMATIC MODELING OF SIGNALING PATHWAYS BY NETWORK FLOW MODEL. Journal of Bioinformatics and Computational Biology, 2009, 07, 309-322.	0.3	20
141	A MODEL AT THE MACROSCOPIC SCALE OF PROSTATE TUMOR GROWTH UNDER INTERMITTENT ANDROGEN SUPPRESSION. Mathematical Models and Methods in Applied Sciences, 2009, 19, 2177-2201.	1.7	20
142	Representing spike trains using constant sampling intervals. Journal of Neuroscience Methods, 2009, 183, 277-286.	1.3	20
143	Faithfulness of Recurrence Plots: A Mathematical Proof. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1550168.	0.7	20
144	Quantifying the effect of Vpu on the promotion of HIV-1 replication in the humanized mouse model. Retrovirology, 2016, 13, 23.	0.9	20

#	Article	IF	CITATIONS
145	Double rotations. Discrete and Continuous Dynamical Systems, 2005, 13, 515-532.	0.5	20
146	Global bifurcation scenario for chaotic dynamical systems that solve optimization problems and analysis of their optimization capability. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai Ronbunshi), 1998, 81, 1-12.	0.1	19
147	Solving the binding problem of the brain with bi-directional functional connectivity. Neural Networks, 2001, 14, 395-406.	3.3	19
148	Complex behaviour of a simple partial-discharge model. Europhysics Letters, 2004, 66, 28-34.	0.7	19
149	Partial state feedback control of chaotic neural network and its application. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 371, 228-233.	0.9	19
150	Mathematically modelling and controlling prostate cancer under intermittent hormone therapy. Asian Journal of Andrology, 2012, 14, 270-277.	0.8	19
151	Towards dynamical network biomarkers in neuromodulation of episodic migraine. Translational Neuroscience, 2013, 4, .	0.7	19
152	Comparison between mathematical models of intermittent androgen suppression for prostate cancer. Journal of Theoretical Biology, 2015, 366, 33-45.	0.8	19
153	Population Code Dynamics in Categorical Perception. Scientific Reports, 2016, 6, 22536.	1.6	19
154	Experimental study on chaotic motion of a flooded ship in waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454, 2537-2553.	1.0	18
155	Possible neural coding with interevent intervals of synchronous firing. Physical Review E, 2002, 66, 026212.	0.8	18
156	Predicting Time Series from Short-Term High-Dimensional Data. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1430033.	0.7	18
157	Robustness and fragility in coupled oscillator networks under targeted attacks. Physical Review E, 2017, 95, 012315.	0.8	18
158	On the covariance matrix of the stationary distribution of a noisy dynamical system. Nonlinear Theory and Its Applications IEICE, 2018, 9, 166-184.	0.4	18
159	Solving combinatorial optimization problems by nonlinear neural dynamics. , 0, , .		17
160	Automatic learning in chaotic neural networks. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi Tsushin Gakkai Ronbunshi), 1996, 79, 87-93.	0.1	17
161	Nonlinear analyses of roll motion of a flooded ship in waves. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2000, 358, 1793-1812.	1.6	17
162	Spatiotemporal Spike Encoding of a Continuous External Signal. Neural Computation, 2002, 14, 1599-1628.	1.3	17

#	Article	IF	CITATIONS
163	Stochastic Resonance and Coincidence Detection in Single Neurons. Neural Processing Letters, 2002, 16, 235-242.	2.0	17
164	Synchronizing a multicellular system by external input: an artificial control strategy. Bioinformatics, 2006, 22, 1775-1781.	1.8	17
165	QUANTITATIVE MODELING OF SPATIO-TEMPORAL DYNAMICS OF INFERIOR OLIVE NEURONS WITH A SIMPLE CONDUCTANCE-BASED MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2010, 20, 583-603.	0.7	17
166	Devaney's chaos on recurrence plots. Physical Review E, 2010, 82, 036209.	0.8	17
167	Probabilistic differential diagnosis of Middle East respiratory syndrome (MERS) using the time from immigration to illness onset among imported cases. Journal of Theoretical Biology, 2014, 346, 47-53.	0.8	17
168	Task-dependent recurrent dynamics in visual cortex. ELife, 2017, 6, .	2.8	17
169	SENSITIVE RESPONSE OF A CHAOTIC WANDERING STATE TO MEMORY FRAGMENT INPUTS IN A CHAOTIC NEURAL NETWORK MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2004, 14, 1413-1421.	0.7	16
170	Chaotic Ising-like dynamics in traffic signals. Scientific Reports, 2013, 3, 1127.	1.6	16
171	Dynamics-based data science in biology. National Science Review, 2021, 8, nwab029.	4.6	16
172	A Supervised Learning Algorithm for Multilayer Spiking Neural Networks Based on Temporal Coding Toward Energy-Efficient VLSI Processor Design. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34, 394-408.	7.2	16
173	Synchronization of pulse-coupled excitable neurons. Physical Review E, 2001, 64, 051906.	0.8	15
174	Online multi-step prediction for wind speeds and solar irradiation: Evaluation of prediction errors. Renewable Energy, 2014, 67, 35-39.	4.3	15
175	Predicting disease progression from short biomarker series using expert advice algorithm. Scientific Reports, 2015, 5, 8953.	1.6	15
176	Predicting ramps by integrating different sorts of information. European Physical Journal: Special Topics, 2016, 225, 513-525.	1.2	15
177	Dimensionless embedding for nonlinear time series analysis. Physical Review E, 2017, 96, 032219.	0.8	15
178	Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons. PLoS Computational Biology, 2020, 16, e1008075.	1.5	15
179	Reconstructing bifurcation diagrams only from time-series data generated by electronic circuits in discrete-time dynamical systems. Chaos, 2020, 30, 013128.	1.0	15
180	Dynamical Calling Behavior Experimentally Observed in Japanese Tree Frogs (Hyla japonica). IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2007, E90-A, 2154-2161.	0.2	15

#	Article	IF	CITATIONS
181	DETECTING NONLINEAR DETERMINISM IN VOICED SOUNDS OF JAPANESE VOWEL /a/. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2000, 10, 1973-1979.	0.7	14
182	Pandemic HIV-1 Vpu overcomes intrinsic herd immunity mediated by tetherin. Scientific Reports, 2015, 5, 12256.	1.6	14
183	Intermittent Androgen Suppression: Estimating Parameters for Individual Patients Based on Initial PSA Data in Response to Androgen Deprivation Therapy. PLoS ONE, 2015, 10, e0130372.	1.1	14
184	Dual coding hypotheses for neural information representation. Mathematical Biosciences, 2007, 207, 312-321.	0.9	13
185	Mathematical-model-based design of silicon burst neurons. Neurocomputing, 2008, 71, 1619-1628.	3.5	13
186	Solution to the inverse problem of estimating gap-junctional and inhibitory conductance in inferior olive neurons from spike trains by network model simulation. Neural Networks, 2013, 47, 51-63.	3.3	13
187	Bifurcation analysis of a mathematical model of atopic dermatitis to determine patient-specific effects of treatments on dynamic phenotypes. Journal of Theoretical Biology, 2018, 448, 66-79.	0.8	13
188	A Spatially-Ordered Pacemaker Observed in Squid Giant Axons. Journal of the Physical Society of Japan, 1982, 51, 942-950.	0.7	12
189	Lyapunov Spectral Analysis on Random Data. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1997, 07, 1267-1282.	0.7	12
190	Equivalence of convex minimization problems over base polytopes. Japan Journal of Industrial and Applied Mathematics, 2012, 29, 519-534.	0.5	12
191	Parsimonious description for predicting high-dimensional dynamics. Scientific Reports, 2015, 5, 15736.	1.6	12
192	Combining multiple forecasts for multivariate time series via state-dependent weighting. Chaos, 2019, 29, 033128.	1.0	12
193	Suppression of Dynamical Network Biomarker Signals at the Predisease State (<i>Mibyou</i>) before Metabolic Syndrome in Mice by a Traditional Japanese Medicine (Kampo Formula) Bofutsushosan. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-9.	0.5	12
194	NONLINEAR VIBRATIONS IN AN AGRICULTURAL IMPLEMENT SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1994, 04, 465-470.	0.7	11
195	Delayed–feedback control of chaotic roll motion of a flooded ship in waves. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2002, 458, 2801-2813.	1.0	11
196	BIFURCATION STRUCTURES OF PERIOD-ADDING PHENOMENA IN AN OCEAN INTERNAL WAVE MODEL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2003, 13, 3409-3424.	0.7	11
197	Sequential Data Fusion via Vector Spaces: Fusion of Heterogeneous Data in the Complex Domain. Journal of Signal Processing Systems, 2007, 48, 99-108.	1.0	11

198 Quaternion-valued short term forecasting of wind profile. , 2010, , .

#	Article	IF	CITATIONS
199	Learning-induced pattern classification in a chaotic neural network. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 412-417.	0.9	11
200	Controlling Chaos of Hybrid Systems by Variable Threshold Values. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2014, 24, 1450125.	0.7	11
201	Relationship between brain network pattern and cognitive performance of children revealed by MEG signals during free viewing of video. Brain and Cognition, 2014, 86, 10-16.	0.8	11
202	Parameter Scaling for Epidemic Size in a Spatial Epidemic Model with Mobile Individuals. PLoS ONE, 2016, 11, e0168127.	1.1	11
203	New variable depth local search for multiple depot vehicle scheduling problems. Journal of Heuristics, 2016, 22, 567-585.	1.1	11
204	Quantifying pluripotency landscape of cell differentiation from scRNA-seq data by continuous birth-death process. PLoS Computational Biology, 2019, 15, e1007488.	1.5	11
205	Self-organization Dynamics in Chaotic Neural Networks. , 1997, , 320-333.		11
206	Hierarchical structure among invariant subspaces of chaotic neural networks. Japan Journal of Industrial and Applied Mathematics, 2001, 18, 335-357.	0.5	10
207	Fractal encoding in a chaotic neural network. Physical Review E, 2001, 64, 046202.	0.8	10
208	A ?-type neuron model using enhancement-mode MOSFETs. Electronics and Communications in Japan, 2003, 86, 18-25.	0.2	10
209	Modeling dynamics from only output data. Physical Review E, 2009, 79, 056208.	0.8	10
210	Nonlinear systems identification by combining regression with bootstrap resampling. Chaos, 2011, 21, 043121.	1.0	10
211	Predicting multivariate time series in real time with confidence intervals: Applications to renewable energy. European Physical Journal: Special Topics, 2014, 223, 2451-2460.	1.2	10
212	Quantifying the Antiviral Effect of IFN on HIV-1 Replication in Cell Culture. Scientific Reports, 2015, 5, 11761.	1.6	10
213	Chaotic Neuro-Computer. World Scientific Series on Nonlinear Science, Series B, 2002, , 237-255.	0.2	9
214	AN ASSOCIATIVE NETWORK WITH CHAOTIC NEURONS AND DYNAMIC SYNAPSES. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2007, 17, 3085-3097.	0.7	9
215	Probabilistic evaluation of interconnectable capacity for wind power generation. European Physical Journal: Special Topics, 2014, 223, 2493-2501.	1.2	9
216	Common stochastic inputs induce neuronal transient synchronization with partial reset. Neural Networks, 2020, 128, 13-21.	3.3	9

#	Article	IF	CITATIONS
217	Collective fluctuation implies imminent state transition. Physics of Life Reviews, 2021, 37, 103-107.	1.5	9
218	AN ANALYSIS ON INSTANTANEOUS STABILITY OF AN ASSOCIATIVE CHAOTIC NEURAL NETWORK. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 2157-2163.	0.7	8
219	Quantitative information transfer through layers of spiking neurons connected by Mexican-Hat-type connectivity. Neurocomputing, 2004, 58-60, 85-90.	3.5	8
220	Spontaneous mode switching in coupled oscillators competing for constant amounts of resources. Chaos, 2010, 20, 013117.	1.0	8
221	Associative dynamics of color images in a large-scale chaotic neural network. Nonlinear Theory and Its Applications IEICE, 2011, 2, 508-521.	0.4	8
222	Parameter estimation and optimal scheduling algorithm for a mathematical model of intermittent androgen suppression therapy for prostate cancer. Chaos, 2013, 23, 043125.	1.0	8
223	Interdisciplinary challenges in the study of power grid resilience and stability and their relation to extreme weather events. European Physical Journal: Special Topics, 2014, 223, 2383-2386.	1.2	8
224	A Linear programming formulation for routing asynchronous power systems of the Digital Grid. European Physical Journal: Special Topics, 2014, 223, 2611-2620.	1.2	8
225	A new protocol for intermittent androgen suppression therapy of prostate cancer with unstable saddle-point dynamics. Journal of Theoretical Biology, 2014, 350, 1-16.	0.8	8
226	Resource-Competing Oscillator Network as a Model of Amoeba-Based Neurocomputer. Lecture Notes in Computer Science, 2009, , 56-69.	1.0	8
227	Sequential Data Fusion via Vector Spaces: Complex Modular Neural Network Approach. , 0, , .		7
228	Node-wise robustness against fluctuations of power consumption in power grids. European Physical Journal: Special Topics, 2014, 223, 2549-2559.	1.2	7
229	Ability of intermittent androgen suppression to selectively create a non-trivial periodic orbit for a type of prostate cancer patients. Journal of Theoretical Biology, 2015, 384, 147-152.	0.8	7
230	Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint. Neural Networks, 2017, 88, 9-21.	3.3	7
231	A High-Speed Channel Assignment Algorithm for Dense IEEE 802.11 Systems via Coherent Ising Machine. IEEE Wireless Communications Letters, 2021, 10, 1682-1686.	3.2	7
232	Blind source separation and chaotic analysis of EEG for judgment of brain death. Artificial Life and Robotics, 2001, 5, 10-14.	0.7	6
233	MULTISTATE ASSOCIATIVE MEMORY WITH PARAMETRICALLY COUPLED MAP NETWORKS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2005, 15, 1395-1410.	0.7	6
234	Switching phenomenon induced by breakdown of chaotic phase synchronization. Physica D: Nonlinear Phenomena, 2009, 238, 1197-1202.	1.3	6

#	Article	IF	CITATIONS
235	Greedy versus social: resource-competing oscillator network as a model of amoeba-based neurocomputer. Natural Computing, 2011, 10, 1219-1244.	1.8	6
236	Theory and Applications of Chaotic Optimization Methods. Studies in Computational Intelligence, 2011, , 131-161.	0.7	6
237	Analysis and stabilization for networked linear hyperbolic systems of rationally dependent conservation laws. Automatica, 2013, 49, 3210-3221.	3.0	6
238	Nonlinear system identification for prostate cancer and optimality of intermittent androgen suppression therapy. Mathematical Biosciences, 2013, 245, 40-48.	0.9	6
239	Approximating high-dimensional dynamics by barycentric coordinates with linear programming. Chaos, 2015, 25, 013114.	1.0	6
240	Experimental and theoretical bases for mechanisms of antigen discrimination by T cells. Biophysics (Nagoya-shi, Japan), 2015, 11, 85-92.	0.4	6
241	On the limits of probabilistic forecasting in nonlinear time series analysis II: Differential entropy. Chaos, 2017, 27, 083125.	1.0	6
242	Balancing specificity, sensitivity, and speed of ligand discrimination by zero-order ultraspecificity. Physical Review E, 2017, 96, 012405.	0.8	6
243	Timescales of Boolean satisfiability solver using continuous-time dynamical system. Communications in Nonlinear Science and Numerical Simulation, 2020, 84, 105183.	1.7	6
244	Quantum expectation-maximization algorithm. Physical Review A, 2020, 101, .	1.0	6
245	Criticality in the Healthy Brain. Frontiers in Network Physiology, 2022, 1, .	0.8	6
246	Embedding entropy: a nonlinear measure of dynamical causality. Journal of the Royal Society Interface, 2022, 19, 20210766.	1.5	6
247	BIFURCATION STRUCTURE OF VIBRATIONS IN AN AGRICULTURAL TRACTOR-VIBRATING SUBSOILER SYSTEM. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 1999, 09, 2091-2098.	0.7	5
248	Itinerant memory dynamics and global bifurcations in chaotic neural networks. Chaos, 2003, 13, 1122-1132.	1.0	5
249	Stochastic resonance of localized activity driven by common noise. Biological Cybernetics, 2005, 92, 438-444.	0.6	5
250	Grazing-induced crises in hybrid dynamical systems. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 3134-3139.	0.9	5
251	On the limits of probabilistic forecasting in nonlinear times series analysis. Chaos, 2016, 26, 123114.	1.0	5
252	Acetylcholine-mediated top-down attention improves the response to bottom-up inputs by deformation of the attractor landscape. PLoS ONE, 2019, 14, e0223592.	1.1	5

#	Article	IF	CITATIONS
253	Chaotic dynamics as a mechanism of rapid transition of hippocampal local field activity between theta and non-theta states. Chaos, 2019, 29, 113115.	1.0	5
254	Time-Domain Digital-to-Analog Converter for Spiking Neural Network Hardware. Circuits, Systems, and Signal Processing, 2021, 40, 2763-2781.	1.2	5
255	Accelerating numerical simulation of continuous-time Boolean satisfiability solver using discrete gradient. Communications in Nonlinear Science and Numerical Simulation, 2021, 102, 105908.	1.7	5
256	The Lin-Kernighan Algorithm Driven by Chaotic Neurodynamics for Large Scale Traveling Salesman Problems. Lecture Notes in Computer Science, 2009, , 563-572.	1.0	5
257	A 18.7 TOPS/W Mixed-Signal Spiking Neural Network Processor With 8-bit Synaptic Weight On-Chip Learning That Operates in the Continuous-Time Domain. IEEE Access, 2022, 10, 48338-48348.	2.6	5
258	Chaos in a Pulse-type Hardware Neuron Model. World Scientific Series on Nonlinear Science, Series B, 2002, , 277-295.	0.2	4
259	Grazing bifurcation and mode-locking in reconstructing chaotic dynamics with a leaky integrate-and-fire model. Artificial Life and Robotics, 2003, 7, 55-62.	0.7	4
260	Dual coding and effects of global feedback in multilayered neural networks. Neurocomputing, 2004, 58-60, 33-39.	3.5	4
261	Time-varying irregularities in multiple trial spike data. European Physical Journal B, 2009, 68, 283-289.	0.6	4
262	NUMERICAL ANALYSIS OF TRANSIENT AND PERIODIC DYNAMICS IN SINGLE AND COUPLED NAGUMO–SATO MODELS. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2012, 22, 1230021.	0.7	4
263	Rewiring-Induced Chaos in Pulse-Coupled Neural Networks. Neural Computation, 2012, 24, 1020-1046.	1.3	4
264	Reinitiation enhances reliable transcriptional responses in eukaryotes. Journal of the Royal Society Interface, 2014, 11, 20140326.	1.5	4
265	Towards the Future of Nonlinear Theory. leice Ess Fundamentals Review, 2015, 9, 82-83.	0.1	4
266	Intercellular communications induced by random fluctuations. Genome Informatics, 2004, 15, 223-33.	0.4	4
267	Time-series analysis of behavior of a two-link nozzle in a dishwasher. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi) Tj ETQq1 1 0.7	84 3.1 4 rg	BT \$Overloc <mark>k</mark>
268	Hardware active axon model simulating chaotic phenomena. , 0, , .		3
269	Estimating statistics of neuronal dynamics via Markov chains. Biological Cybernetics, 2001, 84, 31-40.	0.6	3
270	Learning to estimate user interest utilizing the variational Bayes estimator. , 2005, , .		3

#	Article	IF	CITATIONS
271	Dynamic switching of neural codes in networks with gap junctions. Neural Networks, 2006, 19, 1463-1466.	3.3	3
272	A mathematical model of planning in the prefrontal cortex. Artificial Life and Robotics, 2008, 12, 227-231.	0.7	3
273	On the use of chance-adjusted agreement statistic to measure the assortative transmission of infectious diseases. Computational and Applied Mathematics, 2013, 32, 303-313.	1.3	3
274	Application of joint permutations for predicting coupled time series. Chaos, 2013, 23, 043104.	1.0	3
275	Optimal control laws for traffic flow. Applied Mathematics Letters, 2013, 26, 617-623.	1.5	3
276	A CMOS circuit for PWM-mode nonlinear transformation robust to device mismatches to implement coupled map lattice models. Nonlinear Theory and Its Applications IEICE, 2015, 6, 570-581.	0.4	3
277	Dynamics of an HBV Model with Drug Resistance Under Intermittent Antiviral Therapy. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2015, 25, 1540011.	0.7	3
278	System identification and parameter estimation in mathematical medicine: examples demonstrated for prostate cancer. Quantitative Biology, 2016, 4, 13-19.	0.3	3
279	Smoothing effect for spatially distributed renewable resources and its impact on power grid robustness. Chaos, 2017, 27, 033104.	1.0	3
280	A pulse-width-modulation mode CMOS integrated circuit implementation of threshold-coupled map. Nonlinear Theory and Its Applications IEICE, 2018, 9, 268-280.	0.4	3
281	Bifurcation mechanism for emergence of spontaneous oscillations in coupled heterogeneous excitable units. Physical Review E, 2018, 98, .	0.8	3
282	Comparing catch-up vaccination programs based on analysis of 2012–13 rubella outbreak in Kawasaki City, Japan. PLoS ONE, 2020, 15, e0237312.	1.1	3
283	Practical Dataâ€Driven Flood Forecasting Based on Dynamical Systems Theory. Water Resources Research, 2021, 57, e2020WR028427.	1.7	3
284	Deep Learning for Nonlinear Time Series: Examples for Inferring Slow Driving Forces. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050226.	0.7	3
285	A Current-Sampling-Mode CMOS Arbitrary Chaos Generator Circuit Using Pulse Modulation Approach. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 2009, E92-A, 1308-1315.	0.2	3
286	A Model of Amoeba-Based Neurocomputer. Journal of Computer Chemistry Japan, 2010, 9, 143-156.	0.0	3
287	Switched-capacitor multi-internal-state chaotic neuron circuit with unipolar and bipolar output functions. , $0,,.$		2
288	Modeling and complexity in neural networks. Artificial Life and Robotics, 1999, 3, 148-154.	0.7	2

1

#	Article	IF	CITATIONS
289	Chaotic wandering and its sensitivity to external input in a chaotic neural network. , 0, , .		2
290	An advanced design method of bursting in Fitzhugh-Nagumo model. , 0, , .		2
291	Integrated pulse neuron circuit for asynchronous pulse neural networks. , 0, , .		2
292	Analysis of the Hodgkin-Huxley equations with noise: the effects of noise on chaotic neurodynamics. Artificial Life and Robotics, 2004, 8, 190-196.	0.7	2
293	Change of memory formation according to STDP in a continuous-time neural network model. Systems and Computers in Japan, 2004, 35, 57-66.	0.2	2
294	An IC implementation of a hysteresis two-port VCCS chaotic oscillator. , 2007, , .		2
295	Boundary Feedback Control of Coupled Hyperbolic Linear PDEs Systems with Nonlinear Boundary Conditions. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2011, 44, 14464-14469.	0.4	2
296	Model-free Unscented Kalman Filter with the Modified Method of Analogues. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2012, 45, 40-44.	0.4	2
297	Controlled synchronization: a Huygens' inspired approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 3098-3103.	0.4	2
298	Mathematical Theory for Modelling Complex Systems and Its Transdisciplinary Applications in Science and Technology. Ieice Ess Fundamentals Review, 2015, 8, 218-228.	0.1	2
299	Human photoplethysmogram through the Morse graph: Searching for the saddle point in experimental data. Chaos, 2019, 29, 043121.	1.0	2
300	Explicit transversality conditions and local bifurcation diagrams for Bogdanov–Takens bifurcation on center manifolds. Physica D: Nonlinear Phenomena, 2019, 391, 52-65.	1.3	2
301	Early Detection of a Traffic Flow Breakdown in the Freeway Based on Dynamical Network Markers. International Journal of Intelligent Transportation Systems Research, 2020, 18, 422-435.	0.6	2
302	Forecasting high-dimensional dynamics exploiting suboptimal embeddings. Scientific Reports, 2020, 10, 664.	1.6	2
303	A Model of Chaotic Neural Networks and Its Applications to Parallel Distributed Processing. Studies in Computational Intelligence, 2009, , 213-225.	0.7	2
304	Forecasting Daily Peak Load by a Deterministic Prediction Method with the Gram-Schmidt Orthonormalization. IEEJ Transactions on Electronics, Information and Systems, 1995, 115, 792-797.	0.1	2
305	How does noise propagate in genetic networks? A new approach to understand stochasticity in genetic networks. , 0, , .		1

An analysis on dynamics of pulse propagation networks. , 0, , .

#	Article	IF	CITATIONS
307	Forecasting daily peak load by a deterministic prediction method employing Gramâ€Schmidt orthonormalization. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 1996, 116, 70-79.	0.2	1
308	An asynchronous pulse neural network model and its analog IC implementation. , 0, , .		1
309	Combination of actor/critic algorithm with the goal-directed reasoning. , 0, , .		1
310	Dual coding in a network of spiking neurons: aperiodic spikes and stable firing rates. , 0, , .		1
311	A novel approach for combinatorial optimization problems using chaotic neurodynamics. , 0, , .		1
312	Detection of mutual determinism between a pair of spike trains. Biological Cybernetics, 2001, 85, 327-333.	0.6	1
313	Reconstruction of chaotic dynamics via a network of stochastic resonance neurons and its application to speech. Artificial Life and Robotics, 2001, 5, 33-39.	0.7	1
314	Cryptosystems based on space-discretization of chaotic maps. , 0, , .		1
315	Symbolic dynamics of a chaotic neuron model. Artificial Life and Robotics, 2003, 7, 136-144.	0.7	1
316	Mixed analog/digital system for quadratic assignment problems. , 0, , .		1
317	Networked reinforcement learning. Artificial Life and Robotics, 2008, 13, 112-115.	0.7	1
318	Universality in Mathematical Modeling: A Comment on "Surprising Dynamics From a Simple Model― Mathematics Magazine, 2008, 81, 291-294.	0.1	1
319	Controllability and observability of networked systems of linear hyperbolic partial differential equations. , 2011, , .		1
320	IWCFTA2012 Keynote Speech II - Mathematical Theory for Complex Systems Modelling and its Applications in Science and Technology. , 2012, , .		1
321	Bifurcation analysis of eight coupled degenerate optical parametric oscillators. Physica D: Nonlinear Phenomena, 2018, 372, 22-30.	1.3	1
322	Analysis of an Agent-based Electricity Market Model with Renewable Energy Power Plants by Wind and Solar Power. IEEJ Transactions on Power and Energy, 2012, 132, 468-477.	0.1	1
323	Forecasting wind power ramps with prediction coordinates. Chaos, 2021, 31, 103105.	1.0	1
324	Phase-Model Analysis of Supply Stability in Power Grid of Eastern Japan. IEICE Proceeding Series, 2014, 2, 69-72.	0.0	1

#	Article	IF	CITATIONS
325	Monkey Prefrontal Single-Unit Activity Reflecting Category-Based Logical Thinking Process and Its Neural Network Model. Journal of Neuroscience, 0, , JN-RM-2286-21.	1.7	1
326	Deterministic SR phenomena in autoassociative chaotic neural networks. , 0, , .		0
327	An analysis of coincidence detector networks. , 0, , .		0
328	Chaos and Computatinos. Journal of Japan Society for Fuzzy Theory and Systems, 1995, 7, 466-474.	0.0	0
329	Spatio-temporal summation and self-organization in chaotic neural networks. , 0, , .		0
330	Nonlinear prediction on squid axon response. , 0, , .		0
331	Complicated and computational dynamics of spatio-temporal neurochaos. , 0, , .		0
332	Stationary and deterministic analysis of partial discharge interpulse intervals. , 0, , .		0
333	Learning algorithm for chaotic dynamical systems that solve optimization problems. Electronics and Communications in Japan, Part III: Fundamental Electronic Science (English Translation of Denshi) Tj ETQq1 1 0.7	′84 6.1 4 rg	BT Øverlock
334	A Stationarity Analysis on Respiration Time Series of Newborn Infant. Journal of Japan Society for Fuzzy Theory and Systems, 1999, 11, 848-854.	0.0	0
335	Correlation integral estimated from a spike train. , 0, , .		0
336	Relationship between spike irregularity and neural network dynamics. , 0, , .		0
337	Stability analysis of decentralized motor control. , 0, , .		0
338	PROLOGUE-THE PIONEERING WORK OF THE LATE PROFESSOR GEN MATSUMOTO. Journal of Integrative Neuroscience, 2004, 03, 111-113.	0.8	0
339	Classification of the spike sequences by distinguishing their sources of temporal correlations. Artificial Life and Robotics, 2007, 11, 167-170.	0.7	0
340	Effect of facility closure in the SEIR epidemic model. Artificial Life and Robotics, 2008, 12, 172-175.	0.7	0
341	Self-organization of orientation-selective and ocular-dominance maps through spike-timing-dependent plasticity. Artificial Life and Robotics, 2009, 14, 371-374.	0.7	0
342	Dynamics of HBV model with intermittent antiviral therapy. , 2011, , .		0

20

#	Article	IF	CITATIONS
343	The double-assignment method for the exponential chaotic tabu search in quadratic assignment problems. Nonlinear Theory and Its Applications IEICE, 2011, 2, 472-484.	0.4	0
344	Forced chaos generator with switched CMOS active inductance. , 2011, , .		0
345	Performance improvement of heuristic algorithms for large scale combinatorial optimization problems using Lebesgue Spectrum Filter. , 2012, , .		0
346	Recent progress in mathematical modelling of complex systems. Nonlinear Theory and Its Applications IEICE, 2018, 9, 149-154.	0.4	0
347	Reliable target ligand detection by noise-induced receptor cluster formation. Chaos, 2020, 30, 011104.	1.0	0
348	D14 On an Impact Oscillator with Periodic Boundary Condition : Calculation Method of Local Bifurcations for Period-1 Orbit. The Proceedings of Conference of Kyushu Branch, 2011, 2011, 103-104.	0.0	0
349	Chaos and Robots. Perspective of Chaos Engineering Journal of the Robotics Society of Japan, 1997, 15, 1098-1103.	0.0	0
350	Analysis of the Hodgkin-Huxley equations with noise: the effects of noise on chaotic neurodynamics. Artificial Life and Robotics, 2004, 8, 190-196.	0.7	0
351	Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons. , 2020, 16, e1008075.		0
352	Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons. , 2020, 16, e1008075.		0
353	Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons. , 2020, 16, e1008075.		0
354	Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons. , 2020, 16, e1008075.		0
355	Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons. , 2020, 16, e1008075.		0
356	Electrical coupling controls dimensionality and chaotic firing of inferior olive neurons. , 2020, 16, e1008075.		0
357	Mean-field analysis of Stuart–Landau oscillator networks with symmetric coupling and dynamical noise. Chaos, 2022, 32, 063114.	1.0	Ο