
Hidenori Kuroki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4598824/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pure Water Solid Alkaline Water Electrolyzer Using Fully Aromatic and High-Molecular-Weight Poly(fluorene- <i>alt</i> -tetrafluorophenylene)-trimethyl Ammonium Anion Exchange Membranes and Ionomers. ACS Applied Energy Materials, 2021, 4, 1053-1058.	2.5	45
2	Connected iridium nanoparticle catalysts coated onto silica with high density for oxygen evolution in polymer electrolyte water electrolysis. Nanoscale Advances, 2020, 2, 171-175.	2.2	22
3	Carbon-Free Platinum–Iron Nanonetworks with Chemically Ordered Structures as Durable Oxygen Reduction Electrocatalysts for Polymer Electrolyte Fuel Cells. ACS Applied Nano Materials, 2020, 3, 9912-9923.	2.4	11
4	Catalyst Slurry Preparation Using a Hydrodynamic Cavitation Dispersion Method for Polymer Electrolyte Fuel Cells. Industrial & Engineering Chemistry Research, 2019, 58, 19545-19550.	1.8	19
5	Autonomous Shrinking/Swelling Phenomenon Driven By Macromolecular Interchain Cross-Linking via β-Cyclodextrin–Triazole Complexation. Macromolecules, 2019, 52, 8551-8562.	2.2	4
6	Highly stable membrane–electrode assembly using ether-linkage-free spirobifluorene-based aromatic polyelectrolytes for direct formate solid alkaline fuel cells. Journal of Power Sources, 2019, 438, 226997.	4.0	16
7	Biofouling-Resistant Porous Membranes with a Precisely Adjustable Pore Diameter via 3D Polymer Grafting. ACS Applied Materials & Interfaces, 2019, 11, 18268-18275.	4.0	5
8	Necessity of Hydrogen Society Using Renewable Energies and Electrocatalyst Technologies for Fuel Cells. Journal of the Society of Powder Technology, Japan, 2019, 56, 100-108.	0.0	0
9	Evaluation of performance and durability of platinum–iron–copper with L10 ordered face-centered tetragonal structure as cathode catalysts in polymer electrolyte fuel cells. Journal of Applied Electrochemistry, 2018, 48, 773-782.	1.5	13
10	Refined Structural Analysis of Connected Platinum–Iron Nanoparticle Catalysts with Enhanced Oxygen Reduction Activity. ACS Applied Energy Materials, 2018, 1, 324-330.	2.5	15
11	Carbon-Free Connected Ru, Ir Based Nanoparticle Catalysts for Polymer-Electrolyte Water Electrolysis. ECS Meeting Abstracts, 2018, , .	0.0	Ο
12	Highly-Durable Membrane Electrode Assembly for Direct Formate Solid Alkaline Fuel Cells. ECS Meeting Abstracts, 2018, , .	0.0	1
13	Communication—Acid-Treated Nickel-Rich Platinum–Nickel Alloys for Oxygen Reduction and Methanol Oxidation Reactions in Alkaline Media. Journal of the Electrochemical Society, 2017, 164, F858-F860.	1.3	8
14	AFM Study of Polymer Brush Grafted to Deformable Surfaces: Quantitative Properties of the Brush and Substrate Mechanics. Macromolecules, 2017, 50, 275-282.	2.2	21
15	Platinum–Iron–Nickel Trimetallic Catalyst with Superlattice Structure for Enhanced Oxygen Reduction Activity and Durability. Industrial & Engineering Chemistry Research, 2016, 55, 11458-11466.	1.8	33
16	Nanostructural Control and Performance Analysis of Carbon-Free Catalyst Layers Using Nanoparticle-Connected Hollow Capsules for PEFCs. Journal of the Electrochemical Society, 2016, 163, F927-F932.	1.3	13
17	Response Sensitivity of a Gating Membrane Related to Grafted Polymer Characteristics. Industrial & Engineering Chemistry Research, 2016, 55, 1575-1581.	1.8	8
18	Tunable Ultrathin Membranes with Nonvolatile Pore Shape Memory. ACS Applied Materials & Interfaces, 2015, 7, 10401-10406.	4.0	17

HIDENORI KUROKI

#	Article	IF	CITATIONS
19	Connected nanoparticle catalysts possessing a porous, hollow capsule structure as carbon-free electrocatalysts for oxygen reduction in polymer electrolyte fuel cells. Energy and Environmental Science, 2015, 8, 3545-3549.	15.6	67
20	Stimuliâ€Responsive Materials with Selfâ€Healing Antifouling Surface via 3D Polymer Grafting. Advanced Functional Materials, 2013, 23, 4593-4600.	7.8	96
21	Conversion of a molecular signal into a visual color based on the permeation of nanoparticles through a biomolecule-recognition gating membrane. Analytical Methods, 2012, 4, 2635.	1.3	7
22	Responsive Surfaces for Life Science Applications. Annual Review of Materials Research, 2012, 42, 343-372.	4.3	51
23	Development of Gating-Membrane Based Biosensor using Systematic Material Design. Membrane, 2012, 37, 288-296.	0.0	0
24	Biomolecule-Recognition Gating Membrane Using Biomolecular Cross-Linking and Polymer Phase Transition. Analytical Chemistry, 2011, 83, 9226-9229.	3.2	25
25	Isolation and analysis of a grafted polymer onto a straight cylindrical pore in a thermal-responsive gating membrane and elucidation of its permeation behavior. Journal of Membrane Science, 2010, 352, 22-31.	4.1	40
26	Nanoscale Morphological Control of Anode Electrodes by Grafting of Methylsulfonic Acid Groups onto Platinum–Ruthenium-Supported Carbon Blacks. Journal of the Electrochemical Society, 2006, 153, A1417.	1.3	15
27	DMFC performances using a pore-filling polymer electrolyte membrane for portable usages. Electrochemistry Communications, 2005, 7, 730-734.	2.3	89