
Claudio Battilocchio

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4598623/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Taming hazardous chemistry by continuous flow technology. Chemical Society Reviews, 2016, 45, 4892-4928.	18.7	553
2	MmpL3 Is the Cellular Target of the Antitubercular Pyrrole Derivative BM212. Antimicrobial Agents and Chemotherapy, 2012, 56, 324-331.	1.4	190
3	Machineâ€Assisted Organic Synthesis. Angewandte Chemie - International Edition, 2015, 54, 10122-10136.	7.2	185
4	A Novel Internet-Based Reaction Monitoring, Control and Autonomous Self-Optimization Platform for Chemical Synthesis. Organic Process Research and Development, 2016, 20, 386-394.	1.3	160
5	Visible Light Activation of Boronic Esters Enables Efficient Photoredox C(sp ²)–C(sp ³) Crossâ€Couplings in Flow. Angewandte Chemie - International Edition, 2016, 55, 14085-14089.	7.2	150
6	Enabling Technologies for the Future of Chemical Synthesis. ACS Central Science, 2016, 2, 131-138.	5.3	136
7	A Systems Approach towards an Intelligent and Self ontrolling Platform for Integrated Continuous Reaction Sequences. Angewandte Chemie - International Edition, 2015, 54, 144-148.	7.2	132
8	Iterative reactions of transient boronic acids enable sequential C–C bond formation. Nature Chemistry, 2016, 8, 360-367.	6.6	116
9	A Mild and Efficient Flow Procedure for the Transfer Hydrogenation of Ketones and Aldehydes using Hydrous Zirconia. Organic Letters, 2013, 15, 2278-2281.	2.4	115
10	Mild and Selective Heterogeneous Catalytic Hydration of Nitriles to Amides by Flowing through Manganese Dioxide. Organic Letters, 2014, 16, 1060-1063.	2.4	114
11	Flow chemistry as a discovery tool to access sp ² –sp ³ cross-coupling reactions via diazo compounds. Chemical Science, 2015, 6, 1120-1125.	3.7	106
12	A Versatile Roomâ€īemperature Route to Di―and Trisubstituted Allenes Using Flowâ€Generated Diazo Compounds. Angewandte Chemie - International Edition, 2015, 54, 7920-7923.	7.2	93
13	Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flowâ€Generated Diazo Compounds and Propargylated Amines. Angewandte Chemie - International Edition, 2017, 56, 1864-1868.	7.2	75
14	A class of pyrrole derivatives endowed with analgesic/anti-inflammatory activity. Bioorganic and Medicinal Chemistry, 2013, 21, 3695-3701.	1.4	74
15	Cyclopropanation using flow-generated diazo compounds. Organic and Biomolecular Chemistry, 2015, 13, 2550-2554.	1.5	71
16	Mimicking the surface and prebiotic chemistry of early Earth using flow chemistry. Nature Communications, 2018, 9, 1821.	5.8	71
17	A Machineâ€Assisted Flow Synthesis of SR48692: A Probe for the Investigation of Neurotensin Receptorâ€1. Chemistry - A European Journal, 2013, 19, 7917-7930.	1.7	67
18	Process Intensification for the Continuous Flow Hydrogenation of Ethyl Nicotinate. Organic Process Research and Development, 2014, 18, 1560-1566.	1.3	65

CLAUDIO BATTILOCCHIO

#	Article	IF	CITATIONS
19	A Flow-Based Synthesis of 2-Aminoadamantane-2-carboxylic Acid. Organic Process Research and Development, 2012, 16, 798-810.	1.3	64
20	Integration of enabling methods for the automated flow preparation of piperazine-2-carboxamide. Beilstein Journal of Organic Chemistry, 2014, 10, 641-652.	1.3	64
21	A prototype device for evaporation in batch and flow chemical processes. Green Chemistry, 2013, 15, 2050.	4.6	63
22	A Versatile Route to Unstable Diazo Compounds via Oxadiazolines and their Use in Aryl–Alkyl Crossâ€Coupling Reactions. Angewandte Chemie - International Edition, 2017, 56, 16602-16605.	7.2	62
23	Dynamic flow synthesis of porous organic cages. Chemical Communications, 2015, 51, 17390-17393.	2.2	52
24	Identification of a novel pyrrole derivative endowed with antimycobacterial activity and protection index comparable to that of the current antitubercular drugs streptomycin and rifampin. Bioorganic and Medicinal Chemistry, 2010, 18, 8076-8084.	1.4	48
25	Machines vs Malaria: A Flow-Based Preparation of the Drug Candidate OZ439. Organic Letters, 2015, 17, 3218-3221.	2.4	47
26	Novel Ester and Acid Derivatives of the 1,5-Diarylpyrrole Scaffold as Anti-Inflammatory and Analgesic Agents. Synthesis and in Vitro and in Vivo Biological Evaluation. Journal of Medicinal Chemistry, 2010, 53, 723-733.	2.9	43
27	Novel Analgesic/Anti-Inflammatory Agents: Diarylpyrrole Acetic Esters Endowed with Nitric Oxide Releasing Properties. Journal of Medicinal Chemistry, 2011, 54, 7759-7771.	2.9	42
28	The rapid synthesis of oxazolines and their heterogeneous oxidation to oxazoles under flow conditions. Organic and Biomolecular Chemistry, 2015, 13, 207-214.	1.5	42
29	Sustainable Flow Oppenauer Oxidation of Secondary Benzylic Alcohols with a Heterogeneous Zirconia Catalyst. Organic Letters, 2013, 15, 5698-5701.	2.4	36
30	Developing Pyrroleâ€Derived Antimycobacterial Agents: a Rational Lead Optimization Approach. ChemMedChem, 2011, 6, 593-599.	1.6	35
31	Fast continuous alcohol amination employing a hydrogen borrowing protocol. Green Chemistry, 2019, 21, 59-63.	4.6	31
32	Visible Light Activation of Boronic Esters Enables Efficient Photoredox C(sp ²)–C(sp ³) Cross ouplings in Flow. Angewandte Chemie, 2016, 128, 14291-14295.	1.6	30
33	Unveiling the role of boroxines in metal-free carbon–carbon homologations using diazo compounds and boronic acids. Chemical Science, 2017, 8, 6071-6075.	3.7	30
34	High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Organic Process Research and Development, 2021, 25, 2587-2600.	1.3	27
35	Enhancing the pharmacodynamic profile of a class of selective COX-2 inhibiting nitric oxide donors. Bioorganic and Medicinal Chemistry, 2014, 22, 772-786.	1.4	25
36	Chemoselective Continuous Ru-Catalyzed Hydrogen-Transfer Oppenauer-Type Oxidation of Secondary Alcohols. Organic Process Research and Development, 2017, 21, 1419-1422.	1.3	23

CLAUDIO BATTILOCCHIO

#	Article	IF	CITATIONS
37	A Comment on Continuous Flow Technologies within the Agrochemical Industry. Organic Process Research and Development, 2021, 25, 713-720.	1.3	23
38	A Versatile Roomâ€Temperature Route to Di―and Trisubstituted Allenes Using Flowâ€Generated Diazo Compounds. Angewandte Chemie, 2015, 127, 8031-8034.	1.6	22
39	Continuous Preparation and Use of Dibromoformaldoxime as a Reactive Intermediate for the Synthesis of 3-Bromoisoxazolines. Organic Process Research and Development, 2017, 21, 1588-1594.	1.3	21
40	A multicomponent approach for the preparation of homoallylic alcohols. Chemical Science, 2016, 7, 6803-6807.	3.7	20
41	Integrated plug flow synthesis and crystallisation of pyrazinamide. Reaction Chemistry and Engineering, 2018, 3, 631-634.	1.9	19
42	Direct Oxidation of Csp ³ â^'H bonds using in Situ Generated Trifluoromethylated Dioxirane in Flow. Chemistry - A European Journal, 2019, 25, 1203-1207.	1.7	18
43	Flowâ€Based, Cerium Oxide Enhanced, Lowâ€Level Palladium Sonogashira and Heck Coupling Reactions by Perovskite Catalysts. Israel Journal of Chemistry, 2014, 54, 371-380.	1.0	17
44	A Versatile Route to Unstable Diazo Compounds via Oxadiazolines and their Use in Aryl–Alkyl Cross oupling Reactions. Angewandte Chemie, 2017, 129, 16829-16832.	1.6	17
45	Improving the solubility of a new class of antiinflammatory pharmacodynamic hybrids, that release nitric oxide and inhibit cycloxygenase-2 isoenzyme. European Journal of Medicinal Chemistry, 2012, 58, 287-298.	2.6	16
46	Flow Synthesis and Biological Studies of an Analgesic Adamantane Derivative That Inhibits P2X ₇ -Evoked Glutamate Release. ACS Medicinal Chemistry Letters, 2013, 4, 704-709.	1.3	16
47	Solvent-Free Continuous Operations Using Small Footprint Reactors: A Key Approach for Process Intensification. ACS Sustainable Chemistry and Engineering, 2016, 4, 1912-1916.	3.2	15
48	Enlarging the NSAIDs Family: Ether, Ester and Acid Derivatives of the 1,5-Diarylpyrrole Scaffold as Novel Anti-Inflammatory and Analgesic Agents. Current Medicinal Chemistry, 2011, 18, 1540-1554.	1.2	13
49	Flow synthesis of cyclobutanones via [2 + 2] cycloaddition of keteneiminium salts and ethylene gas. Reaction Chemistry and Engineering, 2017, 2, 295-298.	1.9	13
50	A Convergent Continuous Multistep Process for the Preparation of C ₄ -Oxime-Substituted Thiazoles. Organic Process Research and Development, 2018, 22, 955-962.	1.3	12
51	An Electrochemical Flow-Through Cell for Rapid Reactions. Industrial & Engineering Chemistry Research, 2020, 59, 7321-7326.	1.8	12
52	Design, Synthesis, and Evaluation of Tetrasubstituted Pyridines as Potent 5-HT _{2C} Receptor Agonists. ACS Medicinal Chemistry Letters, 2015, 6, 329-333.	1.3	11
53	Rapid Asymmetric Synthesis of Disubstituted Allenes by Coupling of Flowâ€Generated Diazo Compounds and Propargylated Amines. Angewandte Chemie, 2017, 129, 1890-1894.	1.6	11
54	Rapid Continuous Ruthenium-Catalysed Transfer Hydrogenation of Aromatic Nitriles to Primary Amines. Synlett, 2017, 28, 2855-2858.	1.0	8

#	Article	IF	CITATIONS
55	Preparation of homoallylic amines <i>via</i> a three-component coupling process. Organic and Biomolecular Chemistry, 2018, 16, 6652-6654.	1.5	7
56	Scale-Up of Flow-Assisted Synthesis of C2-Symmetric Chiral PyBox Ligands. Synthesis, 2012, 2012, 635-647.	1.2	6
57	Continuous Flow Hydration of Pyrazine-2-carbonitrile in a Manganese Dioxide Column Reactor. Organic Syntheses, 0, 94, 34-44.	1.0	5
58	Building up a Continuous Flow Platform as an Enabler to the Preparation of Intermediates on Kilogram Scale. Chimia, 2019, 73, 828.	0.3	3