Enrique GarcÃ-a-España

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4598530/publications.pdf

Version: 2024-02-01

305 papers 7,920 citations

47006 47 h-index 95266 68 g-index

337 all docs

 $\begin{array}{c} 337 \\ \text{docs citations} \end{array}$

times ranked

337

5597 citing authors

#	Article	IF	CITATIONS
1	A tetraazahydroxypyridinone derivative as inhibitor of apple juice enzymatic browning and oxidation. LWT - Food Science and Technology, 2022, 154, 112778.	5.2	13
2	Cucurbituril hosts as promoters of aggregation induced emission of triphenylamine derivatives. Physical Chemistry Chemical Physics, 2022, 24, 2403-2411.	2.8	2
3	Aza-Crown-Based Macrocyclic Probe Design for "PET-off―Multi-Cu ²⁺ Responsive and "CHEF-on―Multi-Zn ²⁺ Sensor: Application in Biological Cell Imaging and Theoretical Studies. Inorganic Chemistry, 2022, 61, 1982-1996.	4.0	5
4	Assembly of Polyiodide Networks with Cu(II) Complexes of Pyridinol-Based Tetraaza Macrocycles. Inorganic Chemistry, 2022, 61, 368-383.	4.0	10
5	An antioxidant boehmite amino-nanozyme able to disaggregate Huntington's inclusion bodies. Chemical Communications, 2022, 58, 5021-5024.	4.1	5
6	Mn(II) Complexes of Enlarged Scorpiand-Type Azamacrocycles as Mimetics of MnSOD Enzyme. Applied Sciences (Switzerland), 2022, 12, 2447.	2.5	0
7	Fluorescent Chemosensors Based on Polyamine Ligands: A Review. Chemosensors, 2022, 10, 1.	3.6	12
8	Dual role of silver in a fluorogenic <i>N</i> -squaraine probe based on Ag(<scp>i</scp>)–π interactions. Dalton Transactions, 2021, 50, 9367-9371.	3.3	2
9	Selective encapsulation of a chloride anion in a 1 <i>H</i> -pyrazole Cu ²⁺ metallocage. Dalton Transactions, 2021, 50, 9010-9015.	3.3	3
10	A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride. Molecules, 2021, 26, 2352.	3.8	2
11	Linear, tripodal, macrocyclic: Ligand geometry and ORR activity of supported Pd(II) complexes. Inorganica Chimica Acta, 2021, 518, 120250.	2.4	5
12	Ditopic Aza-Scorpiand Ligands Interact Selectively with ds-RNA and Modulate the Interaction upon Formation of Zn2+ Complexes. Molecules, 2021, 26, 3957.	3.8	1
13	Defined d-hexapeptides bind CUG repeats and rescue phenotypes of myotonic dystrophy myotubes in a Drosophila model of the disease. Scientific Reports, 2021, 11, 19417.	3.3	O
14	Isotope fractionation of zinc in the paddy rice soil-water environment and the role of 2'deoxymugineic acid (DMA) as zincophore under Zn limiting conditions. Chemical Geology, 2021, 577, 120271.	3.3	10
15	Cluster dirhenium(III) cis-dicarboxylates with $\hat{l}\pm$ -amino acids ligands as mighty selective G4s binders. Journal of Inorganic Biochemistry, 2021, 225, 111605.	3.5	1
16	About the relevance of anion-Ï€ interactions in water. Dalton Transactions, 2021, 50, 6834-6839.	3.3	3
17	Heterocyclic Diamines with Leishmanicidal Activity. ACS Infectious Diseases, 2021, 7, 3168-3181.	3.8	5
18	Development of Polyamineâ€Substituted Triphenylamine Ligands with High Affinity and Selectivity for Gâ€Quadruplex DNA. ChemBioChem, 2020, 21, 1167-1177.	2.6	11

#	Article	IF	CITATIONS
19	Tripyridinophane Platform Containing Three Acetate Pendant Arms: An Attractive Structural Entry for the Development of Neutral Eu(III) and Tb(III) Complexes in Aqueous Solution. Inorganic Chemistry, 2020, 59, 1496-1512.	4.0	8
20	Stabilisation of Exotic Tribromide (Br3â^') Anions via Supramolecular Interaction with a Tosylated Macrocyclic Pyridinophane. A Serendipitous Case. Molecules, 2020, 25, 3155.	3.8	13
21	Stabilization of polyiodide networks with Cu(<scp>ii</scp>) complexes of small methylated polyazacyclophanes: shifting directional control from H-bonds to lâcl interactions. Inorganic Chemistry Frontiers, 2020, 7, 4239-4255.	6.0	12
22	Macrocyclic Pyclen-Based Gd3+ Complex with High Relaxivity and pH Response. Inorganic Chemistry, 2020, 59, 7306-7317.	4.0	4
23	Unveiling the reaction mechanism of novel copperN-alkylated tetra-azacyclophanes with outstanding superoxide dismutase activity. Chemical Communications, 2020, 56, 7511-7514.	4.1	9
24	Hybrid GMP–polyamine hydrogels as new biocompatible materials for drug encapsulation. Soft Matter, 2020, 16, 6514-6522.	2.7	5
25	Influence of the chain length and metal : ligand ratio on the self-organization processes of Cu2+ complexes of [1 + 1] 1H-pyrazole azamacrocycles. Dalton Transactions, 2020, 49, 8614-8624.	3.3	5
26	Inhibitory Effect of Azamacrocyclic Ligands on Polyphenol Oxidase in Model and Food Systems. Journal of Agricultural and Food Chemistry, 2020, 68, 7964-7973.	5.2	4
27	Toward a Rational Design of Polyamine-Based Zinc-Chelating Agents for Cancer Therapies. Journal of Medicinal Chemistry, 2020, 63, 1199-1215.	6.4	9
28	Zn ²⁺ and Cu ²⁺ complexes of a fluorescent scorpiand-type oxadiazole azamacrocyclic ligand: crystal structures, solution studies and optical properties. Dalton Transactions, 2020, 49, 1897-1906.	3.3	7
29	Combining Amines and 3-(2-Pyridyl)-[1,2,3]Triazolo[1,5-a]pyridine: An Easy Access to New Functional Polynitrogenated Ligands. Synthesis, 2019, 51, 4034-4042.	2.3	1
30	A New Heterogeneous Catalyst Obtained via Supramolecular Decoration of Graphene with a Pd2+ Azamacrocyclic Complex. Molecules, 2019, 24, 2714.	3.8	19
31	Empirical modeling of material composition and size in MOFs prepared with ligand mixtures. Dalton Transactions, 2019, 48, 2881-2885.	3.3	2
32	Acid–base behaviour and binding to double stranded DNA/RNA of benzo[<i>g</i>]phthalazine-based ligands. New Journal of Chemistry, 2019, 43, 700-708.	2.8	4
33	Stabilization of Supramolecular Networks of Polyiodides with Protonated Small Tetra-azacyclophanes. Inorganics, 2019, 7, 48.	2.7	21
34	Water and oxoanion encapsulation chemistry in a $\sup 1 < \sup H$ -pyrazole azacryptand. New Journal of Chemistry, 2019, 43, 18915-18924.	2.8	2
35	A step forward in the development of superoxide dismutase mimetic nanozymes: the effect of the charge of the surface on antioxidant activity. RSC Advances, 2019, 9, 41549-41560.	3.6	5
36	New polyamine drugs as more effective antichagas agents than benznidazole in both the acute and chronic phases. European Journal of Medicinal Chemistry, 2019, 164, 27-46.	5.5	14

#	Article	lF	Citations
37	Spectroscopic and DFT Characterization of a Highly Reactive Nonheme Fe ^V –Oxo Intermediate. Journal of the American Chemical Society, 2018, 140, 3916-3928.	13.7	86
38	On the Antibacterial Activity of Azacarboxylate Ligands: Lowered Metal Ion Affinities for Bisâ€amide Derivatives of EDTA do not mean Reduced Activity. Chemistry - A European Journal, 2018, 24, 7137-7148.	3.3	3
39	Specific and highly efficient condensation of GC and IC DNA by polyaza pyridinophane derivatives. International Journal of Biological Macromolecules, 2018, 109, 143-151.	7.5	4
40	Enhancement of SOD activity in boehmite supported nanoreceptors. Chemical Communications, 2018, 54, 3871-3874.	4.1	7
41	Methylation as an effective way to generate SOD-activity in copper complexes of scorpiand-like azamacrocyclic receptors. Inorganica Chimica Acta, 2018, 472, 139-148.	2.4	4
42	Luminescent Supramolecular Heterometallic Macrocycles and their Encapsulation on Cholate Gels. European Journal of Inorganic Chemistry, 2018, 2018, 4550-4555.	2.0	2
43	MWCNTs-Supported Pd(II) Complexes with High Catalytic Efficiency in Oxygen Reduction Reaction in Alkaline Media. Inorganic Chemistry, 2018, 57, 14484-14488.	4.0	23
44	Azaâ€Macrocyclic Triphenylamine Ligands for Gâ€Quadruplex Recognition. Chemistry - A European Journal, 2018, 24, 10850-10858.	3.3	17
45	Water-Soluble Squaramide Dihydrates: N-Methylation Modulates the Occurrence of One- and Two-Dimensional Water Clusters through Hydrogen Bonding and Dipolar Interactions. Crystal Growth and Design, 2018, 18, 4420-4427.	3.0	7
46	Coordination Chemistry of Cu ²⁺ Complexes of Small N-Alkylated Tetra-azacyclophanes with SOD Activity. Inorganic Chemistry, 2018, 57, 10961-10973.	4.0	16
47	Anti-angiogenic drug loaded liposomes: Nanotherapy for early atherosclerotic lesions in mice. PLoS ONE, 2018, 13, e0190540.	2.5	9
48	Efficient two-step synthesis of water soluble BODIPY–TREN chemosensors for copper(<scp>ii</scp>) ions. RSC Advances, 2017, 7, 3066-3071.	3.6	11
49	A hybrid catalyst for decontamination of organic pollutants based on a bifunctional dicopper(II) complex anchored over niobium oxyhydroxide. Applied Catalysis B: Environmental, 2017, 209, 339-345.	20.2	8
50	Guanosineâ€5′â€Monophosphate Polyamine Hybrid Hydrogels: Enhanced Gel Strength Probed by <i>z</i> à6€spectroscopy. Chemistry - A European Journal, 2017, 23, 7755-7760.	3.3	12
51	Pb2+ complexes of small-cavity azamacrocyclic ligands: thermodynamic and kinetic studies. Dalton Transactions, 2017, 46, 6645-6653.	3.3	6
52	Bicyclo[2.2.2]octane-1,4-dicarboxylic acid: towards transparent metal–organic frameworks. Dalton Transactions, 2017, 46, 7397-7402.	3.3	12
53	Monoamide Derivatives of EDTA Incorporating Pendent Carboxylates or Pyridyls: Synthesis, Metal Binding, and Crystal Structure of a Dinuclear Ca ²⁺ Complex Featuring Bridging Na ⁺ lons. ChemistrySelect, 2017, 2, 5045-5050.	1.5	1
54	Iron(II) Complexes with Scorpiand-Like Macrocyclic Polyamines: Kinetico-Mechanistic Aspects of Complex Formation and Oxidative Dehydrogenation of Coordinated Amines. Inorganic Chemistry, 2017, 56, 4400-4412.	4.0	4

#	Article	IF	CITATIONS
55	Simple dialkyl pyrazole-3,5-dicarboxylates show <i>in vitro</i> and <i>in vivo</i> activity against disease-causing trypanosomatids. Parasitology, 2017, 144, 1133-1143.	1.5	13
56	Homo- and Heterobinuclear Cu ²⁺ and Zn ²⁺ Complexes of Ditopic Aza Scorpiand Ligands as Superoxide Dismutase Mimics. Inorganic Chemistry, 2017, 56, 13748-13758.	4.0	19
57	Binding Mode and Selectivity of a Scorpiandâ€Like Polyamine Ligand to Single―and Doubleâ€Stranded DNA and RNA: Metal―and pHâ€Driven Modulation. Chemistry - A European Journal, 2017, 23, 15966-15973.	3 . 3	3
58	Polyfunctional Tetraaza-Macrocyclic Ligands: Zn(II), Cu(II) Binding and Formation of Hybrid Materials with Multiwalled Carbon Nanotubes. ACS Omega, 2017, 2, 3868-3877.	3. 5	20
59	Synthesis, Optical Properties, and DNA Interaction of New Diquats Based on Triazolopyridines and Triazoloquinolines. Chemistry - A European Journal, 2017, 23, 12825-12832.	3 . 3	8
60	Construction of green nanostructured heterogeneous catalysts via non-covalent surface decoration of multi-walled carbon nanotubes with Pd(II) complexes of azamacrocycles. Journal of Catalysis, 2017, 353, 239-249.	6.2	27
61	Metal Complexes as Receptors. , 2017, , 437-477.		O
62	In silico discovery of substituted pyrido [2,3-d] pyrimidines and pentamidine-like compounds with biological activity in myotonic dystrophy models. PLoS ONE, 2017, 12, e0178931.	2.5	9
63	Molecular Rearrangement of an Aza-Scorpiand Macrocycle Induced by pH: A Computational Study. International Journal of Molecular Sciences, 2016, 17, 1131.	4.1	6
64	Bisferrocenyl-functionalized pseudopeptides: access to separated ionic and electronic contributions for electrochemical anion sensing. RSC Advances, 2016, 6, 35257-35266.	3.6	9
65	Oxidative stress protection by manganese complexes of tail-tied aza-scorpiand ligands. Journal of Inorganic Biochemistry, 2016, 163, 230-239.	3 . 5	10
66	A water molecule in the interior of a 1H-pyrazole Cu ²⁺ metallocage. New Journal of Chemistry, 2016, 40, 5670-5674.	2.8	6
67	Synthesis, Characterization, and Cu2+ Coordination Studies of a 3-Hydroxy-4-pyridinone Aza Scorpiand Derivative. Inorganic Chemistry, 2016, 55, 7564-7575.	4.0	3
68	Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species. Angewandte Chemie, 2016, 128, 6418-6422.	2.0	19
69	N-(2-methyl-indol-1H-5-yl)-1-naphthalenesulfonamide: A novel reversible antimitotic agent inhibiting cancer cell motility. Biochemical Pharmacology, 2016, 115, 28-42.	4.4	7
70	Exceedingly Fast Oxygen Atom Transfer to Olefins via a Catalytically Competent Nonheme Iron Species. Angewandte Chemie - International Edition, 2016, 55, 6310-6314.	13.8	61
71	In vitro antileishmanial activity of aza-scorpiand macrocycles. Inhibition of the antioxidant enzyme iron superoxide dismutase. RSC Advances, 2016, 6, 17446-17455.	3.6	13
72	Dicopper(II) Metallacyclophanes with <i>N,N</i> ′-2,6-Pyridinebis(oxamate): Solution Study, Synthesis, Crystal Structures, and Magnetic Properties. Inorganic Chemistry, 2016, 55, 2390-2401.	4.0	16

#	Article	IF	CITATIONS
73	Unusual phosphine oxidation: new triazolopyridyl-quinolyl phosphine oxide fluorescent dyes. RSC Advances, 2015, 5, 29809-29813.	3.6	3
74	Equilibrium, Kinetic, and Computational Studies on the Formation of Cu ²⁺ and Zn ²⁺ Complexes with an Indazole-Containing Azamacrocyclic Scorpiand: Evidence for Metal-Induced Tautomerism. Inorganic Chemistry, 2015, 54, 1983-1991.	4.0	9
75	"3 + 1 = 6 + 2―in Cu(ii) coordination chemistry of 1H-pyrazole aza cryptands. Dalton Transactions, 2015, 44, 3378-3383.	3.3	5
76	From isolated 1H-pyrazole cryptand anion receptors to hybrid inorganic–organic 1D helical polymeric anion receptors. Dalton Transactions, 2015, 44, 7761-7764.	3.3	8
77	Correlation between the molecular structure and the kinetics of decomposition of azamacrocyclic copper(<scp>ii</scp>) complexes. Dalton Transactions, 2015, 44, 8255-8266.	3.3	7
78	Synthesis and Structural Characterization of a Cyclen-Derived Molecular Cage. Organic Letters, 2015, 17, 5850-5853.	4.6	4
79	Trapping a Highly Reactive Nonheme Iron Intermediate That Oxygenates Strong C—H Bonds with Stereoretention. Journal of the American Chemical Society, 2015, 137, 15833-15842.	13.7	149
80	A thermodynamic insight into the recognition of hydrophilic and hydrophobic amino acids in pure water by aza-scorpiand type receptors. Organic and Biomolecular Chemistry, 2015, 13, 843-850.	2.8	7
81	Mn(II) complexes of scorpiand-like ligands. A model for the MnSOD active centre with high in vitro and in vivo activity. Journal of Inorganic Biochemistry, 2015, 143, 1-8.	3.5	34
82	Aryl-bis-(scorpiand)-aza receptors differentiate between nucleotide monophosphates by a combination of aromatic, hydrogen bond and electrostatic interactions. Organic and Biomolecular Chemistry, 2015, 13, 1732-1740.	2.8	15
83	Mechanochemical synthesis of an Eu(III) complex. Preparation and Luminescence Properties of PMMA:[C42H38N5O19Eu] Hybrid Films. Polyhedron, 2015, 85, 10-14.	2.2	17
84	Significant In Vivo Anti-Inflammatory Activity of Pytren4Q-Mn a Superoxide Dismutase 2 (SOD2) Mimetic Scorpiand-Like Mn (II) Complex. PLoS ONE, 2015, 10, e0119102.	2.5	19
85	Revealing interactions between polyaza pyridinophane compounds and DNA/RNA polynucleotides by SERS spectroscopy. Journal of Raman Spectroscopy, 2014, 45, 863-872.	2.5	4
86	<i>In vitro</i> leishmanicidal activity of pyrazole-containing polyamine macrocycles which inhibit the Fe-SOD enzyme of <i>Leishmania infantum</i> and <i>Leishmania braziliensis</i> species. Parasitology, 2014, 141, 1031-1043.	1.5	15
87	Equilibrium and kinetics studies on bibrachial lariat aza-crown/Cu(II) systems reveal different behavior associated with small changes in the structure. Inorganica Chimica Acta, 2014, 417, 246-257.	2.4	3
88	Molecular Recognition of Nucleotides in Water by Scorpiandâ€Type Receptors Based on Nucleobase Discrimination. Chemistry - A European Journal, 2014, 20, 3730-3741.	3.3	31
89	Highlights of metal ion-based photochemical switches. Coordination Chemistry Reviews, 2014, 260, 156-215.	18.8	102
90	Synthetic single and double aza-scorpiand macrocycles acting as inhibitors of the antioxidant enzymes iron superoxide dismutase and trypanothione reductase in Trypanosoma cruzi with promising results in a murine model. RSC Advances, 2014, 4, 65108-65120.	3.6	19

#	Article	IF	CITATIONS
91	Visualizing the atherosclerotic plaque: a chemical perspective. Chemical Society Reviews, 2014, 43, 2858-2876.	38.1	14
92	Protonation, coordination chemistry, cyanometallate "supercomplex―formation and fluorescence chemosensing properties of a bis(2,2′-bipyridino)cyclophane receptor. Dalton Transactions, 2014, 43, 2437-2447.	3.3	6
93	Metals in supramolecular chemistry. Inorganica Chimica Acta, 2014, 417, 3-26.	2.4	24
94	Voltammetry of microparticles, scanning electrochemical microscopy and scanning tunneling microscopy applied to the study of dsDNA binding and damage by scorpiand-like polyamine receptors. Journal of Electroanalytical Chemistry, 2014, 720-721, 24-33.	3.8	3
95	A dinucleating ligand which promotes DNA cleavage with one and without a transition metal ion. Chemical Communications, 2013, 49, 3655.	4.1	17
96	Molecular Switching, Logics, and Memories., 2013,, 969-1037.		1
97	Scorpiand-like azamacrocycles prevent the chronic establishment of Trypanosoma cruzi in a murine model. European Journal of Medicinal Chemistry, 2013, 70, 189-198.	5.5	23
98	Selective Recognition of Sulfate Anions by a Cyclopeptide-Derived Receptor in Aqueous Phosphate Buffer. Organic Letters, 2013, 15, 6238-6241.	4.6	49
99	Solution and solid state studies with the bis-oxalato building block [Cr(pyim)(C ₂ O ₄) ₂] ^{â°'} [pyimÂ=Â2-(2′-pyridyl)imidazole]. Journal of Coordination Chemistry, 2013, 66, 3349-3364.	2.2	11
100	Intermolecular Binding Modes in a Novel $[1+1]$ Condensation 1H-Pyrazole Azamacrocycle: A Solution and Solid State Study with Evidence for CO2Fixation. Inorganic Chemistry, 2013, 52, 10795-10803.	4.0	14
101	Homo- and heterobinuclear Cu2+ and Zn2+ complexes of abiotic cyclic hexaazapyridinocyclophanes as SOD mimics. Dalton Transactions, 2013, 42, 11194.	3.3	24
102	InÂvitro activity of scorpiand-like azamacrocycle derivatives in promastigotes and intracellular amastigotes of Leishmania infantum and Leishmania braziliensis. European Journal of Medicinal Chemistry, 2013, 62, 466-477.	5.5	28
103	The size of the aryl linker between two polyaza-cyclophane moieties controls the binding selectivity to ds-RNA vs. ds-DNA. Organic and Biomolecular Chemistry, 2013, 11, 2154.	2.8	8
104	Equilibrium and kinetic studies on complex formation and decomposition and the movement of Cu2+metal ions within polytopic receptors. Dalton Transactions, 2013, 42, 6131.	3.3	12
105	Boehmite Supported Pyrene Polyamine Systems as Probes for Iodide Recognition. Journal of Physical Chemistry C, 2013, 117, 14325-14331.	3.1	27
106	In Vitro and in Vivo Antileishmanial and Trypanocidal Studies of New <i>N</i> -Benzene- and <i>N</i> -Naphthalenesulfonamide Derivatives. Journal of Medicinal Chemistry, 2013, 56, 8984-8998.	6.4	38
107	Nucleic Acids as Supramolecular Targets. Monographs in Supramolecular Chemistry, 2013, , 213-259.	0.2	5
108	Grafted squaramide monoamine nanoparticles as simple systems for sulfate recognition in pure water. Chemical Communications, 2012, 48, 2609.	4.1	30

#	Article	IF	Citations
109	Modulation of DNA Binding by Reversible Metal-Controlled Molecular Reorganizations of Scorpiand-like Ligands. Journal of the American Chemical Society, 2012, 134, 9644-9656.	13.7	78
110	A Binuclear Mn ^{III} Complex of a Scorpiand-Like Ligand Displaying a Single Unsupported Mn ^{III} –O–Mn ^{III} Bridge. Inorganic Chemistry, 2012, 51, 11698-11706.	4.0	10
111	In Vitro and in Vivo Trypanosomicidal Activity of Pyrazole-Containing Macrocyclic and Macrobicyclic Polyamines: Their Action on Acute and Chronic Phases of Chagas Disease. Journal of Medicinal Chemistry, 2012, 55, 4231-4243.	6.4	30
112	Supramolecular complexation for environmental control. Chemical Society Reviews, 2012, 41, 3859.	38.1	126
113	Copper(ii) complexes of quinoline polyazamacrocyclic scorpiand-type ligands: X-ray, equilibrium and kinetic studies. Dalton Transactions, 2012, 41, 5617.	3.3	17
114	Kinetics of Zn2+ complexation by a ditopic phenanthroline-azamacrocyclic scorpiand-like receptor. Chemical Communications, 2012, 48, 1994.	4.1	6
115	Addressing selectivity criteria in binding equilibria. Coordination Chemistry Reviews, 2012, 256, 13-27.	18.8	48
116	Triazolopyridines. Part 28. The ring–chain isomerization strategy: triazolopyridine- and triazoloquinoline–pyridine based fluorescence ligands. Tetrahedron, 2012, 68, 3701-3707.	1.9	14
117	Manganese(ii) complexes of scorpiand-like azamacrocycles as MnSOD mimics. Chemical Communications, 2011, 47, 5988.	4.1	35
118	Surface-enhanced Raman study of the interactions between tripodal cationic polyamines and polynucleotides. Analyst, The, 2011, 136, 3185.	3.5	14
119	Lanthanide complexes as imaging agents anchored on nano-sized particles of boehmite. Dalton Transactions, 2011, 40, 6451.	3.3	18
120	Hydrogen-Bond-Mediated Self-Assembly of 26-Membered Diaza Tetraester Crowns of 3,5-Disubstituted $1 < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < i > H < $	3.2	5
121	Kinetic study of the oxidation of [Fe(CN)6]4â^' by [Co(NH3)4pzCO2]2+ and <mml:math overflow="scroll" si7.gif"="" xmlns:mml="http://www.w3.org/1998/Math/Math/Mt altimg="><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><</mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:math>	> 2.6 > 7 mml:mr	n \$2
122	Azonia spiro polyaza macrocycles containing biphenyl subunits as anion and cation receptors. Tetrahedron, 2011, 67, 4655-4663.	1.9	7
123	Synthesis and cytotoxic activity of a new potential DNA bisintercalator: 1,4-Bis{3-[N-(4-chlorobenzo[g]phthalazin-1-yl)aminopropyl]}piperazine. Bioorganic and Medicinal Chemistry, 2010, 18, 5301-5309.	3.0	15
124	Squaramide-Based Reagent for Selective Chromogenic Sensing of Cu(II) through a Zwitterion Radical. Organic Letters, 2010, 12, 3840-3843.	4.6	61
125	Coordination of Cu ²⁺ lons to <i>C</i> ₂ Symmetric Pseudopeptides Derived from Valine. Inorganic Chemistry, 2010, 49, 7841-7852.	4.0	32
126	Hydrogen and Copper Ion Induced Molecular Reorganizations in Two New Scorpiand-Like Ligands Appended with Pyridine Rings. Inorganic Chemistry, 2010, 49, 7016-7027.	4.0	22

#	Article	IF	CITATIONS
127	Nitrate Encapsulation within the Cavity of Polyazapyridinophane. Considerations on Nitrateâ^'Pyridine Interactions. Crystal Growth and Design, 2010, 10, 3418-3423.	3.0	12
128	Tritopic phenanthroline and pyridine tail-tied aza-scorpiands. Organic and Biomolecular Chemistry, 2010, 8, 2367.	2.8	24
129	Acid–base properties of functionalised tripodal polyamines and their interaction with nucleotides and nucleic acids. Organic and Biomolecular Chemistry, 2010, 8, 2567.	2.8	13
130	Selective electrochemical discrimination between dopamine and phenethylamine-derived psychotropic drugs using electrodes modified with an acyclic receptor containing two terminal 3-alkoxy-5-nitroindazole rings. Analyst, The, 2010, 135, 1449.	3.5	13
131	Preparation of Hg2+ selective fluorescent chemosensors based on surface modified core–shell aluminosilicate nanoparticles. New Journal of Chemistry, 2010, 34, 567.	2.8	18
132	Structural reorganisation in polytopic receptors revealed by kinetic studies. Chemical Communications, 2010, 46, 6081.	4.1	8
133	Zn(ii)-coordination and fluorescence studies of a new polyazamacrocycle incorporating 1H-pyrazole and naphthalene units. Dalton Transactions, 2010, 39, 7741.	3.3	7
134	Synthesis, Protonation and Cu ^{II} Complexes of Two Novel Isomeric Pentaazacyclophane Ligands: Potentiometric, DFT, Kinetic and AMP Recognition Studies. European Journal of Inorganic Chemistry, 2009, 2009, 62-75.	2.0	11
135	A Ferromagnetic [Cu ₃ (OH) ₂] ⁴⁺ Cluster Formed inside a Tritopic Nonaazapyridinophane: Crystal Structure and Solution Studies. Angewandte Chemie - International Edition, 2009, 48, 6055-6058.	13.8	56
136	Imaging atoms in medicine. BioMetals, 2009, 22, 393-399.	4.1	2
137	Effect of Water/Carboxymethylcellulose Gel on the Excimer Formation of Polyamine Ligands Functionalized with Naphthalene. Journal of Physical Chemistry B, 2009, 113, 15455-15459.	2.6	3
138	Geometric Isomerism in Pentacoordinate Cu2+ Complexes: Equilibrium, Kinetic, and Density Functional Theory Studies Reveal the Existence of Equilibrium between Square Pyramidal and Trigonal Bipyramidal Forms for a Tren-Derived Ligand. Inorganic Chemistry, 2009, 48, 902-914.	4.0	16
139	Cu ²⁺ Coordination Properties of a 2-Pyridine Heptaamine Tripod: Characterization and Binding Mechanism. Inorganic Chemistry, 2009, 48, 8985-8997.	4.0	12
140	[1,2,3]Triazolo[1,5-a]pyridine derivatives as molecular chemosensors for zinc(ii), nitrite and cyanide anions. New Journal of Chemistry, 2009, 33, 2102.	2.8	41
141	Self-assembly of 3,5-bis(ethoxycarbonyl)pyrazolate anions and ammonium cations of \hat{l}^2 -phenylethylamine or homoveratrylamine into hetero-double-stranded helical structures. Organic and Biomolecular Chemistry, 2009, 7, 3212.	2.8	6
142	CO ₂ Fixation and Activation by Cu ^{II} Complexes of 5,5″‶erpyridinophane Macrocycles. European Journal of Inorganic Chemistry, 2008, 2008, 84-97.	2.0	19
143	Equilibrium and Kinetic Properties of Cu ^{II} Cyclophane Complexes: The Effect of Changes in the Macrocyclic Cavity Caused by Changes in the Substitution at the Aromatic Ring. European Journal of Inorganic Chemistry, 2008, 2008, 1497-1507.	2.0	6
144	Extended structures of copper(II) complexes with 2-di1H-2-imidazolylmethylmalonate (DIMMAL), a versatile bis(imidazole)â€"bis(carboxylate) ligand: Solution studies, crystal structures and spectroscopic characterization. Polyhedron, 2008, 27, 633-640.	2.2	12

#	Article	IF	Citations
145	Diazatetraester 1 <i>H</i> -Pyrazole Crowns as Fluorescent Chemosensors for AMPH, METH, MDMA (Ecstasy), and Dopamine. Organic Letters, 2008, 10, 5099-5102.	4.6	24
146	Synthesis and coordination properties of an azamacrocyclic Zn(II) chemosensor containing pendent methylnaphthyl groups. Dalton Transactions, 2008, , 6530.	3.3	21
147	Electrochemically-driven conformational shift in mono- and di-copper constrained macrotricyclic cyclen receptors. Dalton Transactions, 2008, , 3169.	3.3	5
148	A Simple Helical Macrocyclic Polyazapyridinophane as a Stereoselective Receptor of Biologically Important Dicarboxylates under Physiological Conditions. Journal of Organic Chemistry, 2008, 73, 374-382.	3.2	30
149	Anion Detection by Fluorescent Zn(II) Complexes of Functionalized Polyamine Ligands. Inorganic Chemistry, 2008, 47, 6173-6183.	4.0	43
150	Polyfunctional Recognition of Pyridinedicarboxylate Anions with Macrocyclic Polyamine Receptors Containing Heteroaromatic Groups. Journal of Organic Chemistry, 2008, 73, 8286-8295.	3.2	13
151	Nanoparticles as Contrast Agents for MRI of Atherosclerotic Lesions. Clinical Medicine Cardiology, 2008, 2, CMC.S642.	0.1	3
152	One-pot preparation of surface modified boehmite nanoparticles with rare-earth cyclen complexes. Chemical Communications, 2007, , 3392.	4.1	17
153	Oxaaza cyclophanes in the recognition of nucleotides. The role of oxygen and electron-rich aromatic rings. Organic and Biomolecular Chemistry, 2007, 5, 1935-1944.	2.8	17
154	Hydrogen and Copper Ion-Induced Molecular Reorganizations in Scorpionand-like Ligands. A Potentiometric, Mechanistic, and Solid-State Study. Inorganic Chemistry, 2007, 46, 5707-5719.	4.0	51
155	Naphthalene-containing polyamines supported in nanosized boehmite particles. New Journal of Chemistry, 2007, 31, 44-51.	2.8	19
156	A bibracchial lariat aza-crown ether as an abiotic catalyst of malonic acid enolization. New Journal of Chemistry, 2007, 31, 2065.	2.8	0
157	Imidazolate bridged Cu(ii)–Cu(ii) and Cu(ii)–Zn(ii) complexes of a terpyridinophane azamacrocycle: a solution and solid state study. Dalton Transactions, 2007, , 4726.	3.3	41
158	Synthesis and photophysical properties of dansyl-based polyamine ligands and their Zn(II) complexes. Inorganica Chimica Acta, 2007, 360, 1200-1208.	2.4	33
159	Electrochemistry of copper complexes with macrocyclic polyamines containing pyrazole units. Dalton Transactions, 2006, , 4926-4935.	3.3	5
160	A highly enantioselective abiotic receptor for malate dianion in aqueous solution. Chemical Communications, 2006, , 1227.	4.1	35
161	Cu2+and AMP complexation of enlarged tripodal polyamines. Dalton Transactions, 2006, , 4474-4481.	3.3	21
162	Specific interaction of citrate with bis(fluorophoric) bibrachial lariat aza-crown in comparison with the other components of the Krebs cycle. Chemical Communications, 2006, , 3824-3826.	4.1	29

#	Article	IF	Citations
163	Dramatic selectivity differences in the association of DNA and RNA models with new ethylene- and propylene diamine derivatives and their copper complexes. Organic and Biomolecular Chemistry, 2006, 4, 1755-1759.	2.8	26
164	Properties of a Triazolopyridine System as a Molecular Chemosensor for Metal Ions, Anions, and Amino Acids. Journal of Organic Chemistry, 2006, 71, 9030-9034.	3.2	42
165	The Sodium Salt of Diethyl 1H-pyrazole-3,5-dicarboxylate as an Efficient Amphiphilic Receptor for Dopamine and Amphetamines. Crystal Structure and Solution Studies. Journal of the American Chemical Society, 2006, 128, 16458-16459.	13.7	33
166	CO2Fixation by Cu2+and Zn2+Complexes of a Terpyridinophane Aza Receptor. Crystal Structures of Cu2+Complexes, pH-Metric, Spectroscopic, and Electrochemical Studies. Inorganic Chemistry, 2006, 45, 3803-3815.	4.0	46
167	Anion coordination chemistry in aqueous solution of polyammonium receptors. Coordination Chemistry Reviews, 2006, 250, 2952-2986.	18.8	276
168	Synthesis and Cu(II) coordination of two new hexaamines containing alternated propylenic and ethylenic chains: Kinetic studies on pH-driven metal ion slippage movements. Inorganica Chimica Acta, 2006, 359, 2004-2014.	2.4	12
169	Synthesis of novel fluorescent 3-aryl- and 3-methyl-7-aryl-[1,2,3]triazolo[1,5-a]pyridines by Suzuki cross-coupling reactions. Tetrahedron Letters, 2006, 47, 8101-8103.	1.4	26
170	The structure of ammonium pyrazolates in the solid state. Magnetic Resonance in Chemistry, 2006, 44, 1067-1072.	1.9	8
171	Culland ZnIICoordination Chemistry of Pyrazole-Containing Polyamine Receptors â ⁻² Influence of the Hydrocarbon Side Chain Length on the Metal Coordination. European Journal of Inorganic Chemistry, 2005, 2005, 189-208.	2.0	36
172	A New ZnII Tweezer Pyridine-Naphthalene System - An Off-On-Off System Working in a Biological pH Window. European Journal of Inorganic Chemistry, 2005, 2005, 4301-4308.	2.0	24
173	Binuclear Cu2+ complex mediated discrimination between l-glutamate and l-aspartate in water. Chemical Communications, 2005, , 3086.	4.1	40
174	New sensing devices part 1: indole-containing polyamines supported in nanosized boehmite particles. Journal of Materials Chemistry, 2005, 15, 2920.	6.7	22
175	Shape-Complementarity in the Recognition of Tricarboxylic Acids by a [3+3] Polyazacyclophane Receptor. Journal of Organic Chemistry, 2005, 70, 2042-2047.	3.2	28
176	Role of Anions on the Crystal Structures of Copper(II) and Zinc(II) Complexes of a Tunable Butterfly Cyclophane Macrocycle. Inorganic Chemistry, 2005, 44, 7503-7510.	4.0	7
177	Spectroscopy and Coordination Chemistry of a New Bisnaphthaleneâ^'Bisphenanthroline Ligand Displaying a Sensing Ability for Metal Cations. Inorganic Chemistry, 2005, 44, 7449-7458.	4.0	51
178	X-Ray characterization of 3-methyl-6,8-di(2-pyridyl)-[1,2,3]triazolo[5',1':6,1]pyrido[2,3-d]pyrimidine. Arkivoc, 2005, 2005, 71-75.	0.5	6
179	Proton Transfer Reactions. , 2004, , 1-37.		1
180	Fluorescent Type II Materials from Naphthylmethyl Polyamine Precursors. Supramolecular Chemistry, 2004, 16, 573-580.	1.2	6

#	Article	IF	Citations
181	Dinuclear ZnII Complexes of Polydentate Polyamines as Minimalist Models of Hydrolytic Reactions. European Journal of Inorganic Chemistry, 2004, 2004, 4061-4071.	2.0	14
182	Studies on the interaction of phosphate anions with N-functionalised polyaza[n]paracyclophanes: the role of N-methylation. Organic and Biomolecular Chemistry, 2004, 2, 816-820.	2.8	29
183	Stability and kinetics of the acid-promoted decomposition of Cu(ii) complexes with hexaazacyclophanes: kinetic studies as a probe to detect changes in the coordination mode of the macrocycles. Dalton Transactions, 2004, , 94-103.	3.3	23
184	Synthesis and H+, Cu2+, and Zn2+Coordination Behavior of a Bis(fluorophoric) Bibrachial Lariat Aza-Crown. Inorganic Chemistry, 2004, 43, 6114-6122.	4.0	62
185	CO2Fixation by Copper(II) Complexes of a Terpyridinophane Aza Receptor. Journal of the American Chemical Society, 2004, 126, 5082-5083.	13.7	94
186	New 1H-Pyrazole-Containing Polyamine Receptors Able To Complexl-Glutamate in Water at Physiological pH Values. Journal of the American Chemical Society, 2004, 126, 823-833.	13.7	96
187	Potentiometric, NMR, and Fluorescence-Emission Studies on the Binding of Adenosine 5′-Triphosphate (ATP) by Open-Chain Polyamine Receptors Containing Naphthylmethyl and/or Anthrylmethyl Groups. Helvetica Chimica Acta, 2003, 86, 3118-3135.	1.6	53
188	Efficient Macrocyclization of U-Turn Preorganized Peptidomimetics:  The Role of Intramolecular H-Bond and Solvophobic Effects. Journal of the American Chemical Society, 2003, 125, 6677-6686.	13.7	104
189	New Efficient Procedure for the Use of Diethoxyphosphoryl as a Protecting Group in the Synthesis of Polyazamacrocycles. Preparation of Polyazacyclophanes Derived from Resorcinol. Journal of Organic Chemistry, 2003, 68, 10169-10171.	3.2	10
190	Energetics and Dynamics of Naphthalene Polyaminic Derivatives. Influence of Structural Design in the Balance Static vs Dynamic Excimer Formation. Journal of Physical Chemistry A, 2003, 107, 11307-11318.	2.5	37
191	Copper(ii) and Zn(ii) coordination chemistry of tetraaza[n]cyclophanes. New Journal of Chemistry, 2003, 27, 1132-1139.	2.8	14
192	Hydrogen-ion driven molecular motions in Cu2+-complexes of a ditopic phenanthrolinophane ligand. Chemical Communications, 2003, , 3032-3033. Thermodynamic and kinetic studies on the Cu2+ coordination chemistry of a novel binucleating	4.1	15
193	pyridinophane ligandElectronic supplementary information (ESI) available: Table S1: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with ligand L. Table S2: observed rate constants for the acid-promoted decomposition of Cu2+ complexes with macrocycle L1. Fig. S1: Variation of some selected 13C chemical shifts as a function of pH. See	3.3	17
194	http://www.rsc.org/suppdata/dt/b2/b209013a/. Dalton Transactions, 2003, 1186-1193. Intramolecular Excimer Formation in a Tripodal Polyamine Receptor Containing Three Naphthalene Fluorophores. Journal of Physical Chemistry B, 2003, 107, 6573-6578.	2.6	57
195	Long Range Electron Transfer Quenching in Polyamine Chains Bearing a Terminal Naphthalene Unit. Journal of Physical Chemistry A, 2002, 106, 8207-8212.	2.5	47
196	Effective complexation of psychotropic phenethylammonium salts from a disodium dipyrazolate salt of macrocyclic structure. Perkin Transactions II RSC, 2002, , 1634-1638.	1.1	7
197	Cu2+-Induced formation of cage-like compounds containing pyrazole macrocycles. Chemical Communications, 2002, , 936-937.	4.1	26
198	Ground and excited state properties of polyamine chains bearing two terminal naphthalene units. Perkin Transactions II RSC, 2002, , 991-998.	1.1	19

#	Article	IF	Citations
199	Energy transfer between polyamine chains bearing naphthalene terminal units and K3[Co(CN)6]: an example of a molecular photoreactor. Dalton Transactions RSC, 2002, , 3024-3028.	2.3	2
200	Dopamine Interaction in the Absence and in the Presence of Cu2+ lons with Macrocyclic and Macrobicyclic Polyamines Containing Pyrazole Units. Crystal Structures of [Cu2(L1)(H2O)2](ClO4)4 and [Cu2(H-1L3)](ClO4)3·2H2O. Journal of the American Chemical Society, 2001, 123, 10560-10570.	13.7	68
201	Polyamine Linear Chains Bearing Two Identical Terminal Aromatic Units. Evidence for a Photo Induced Bending Movement. Supramolecular Chemistry, 2001, 13, 435-445.	1.2	22
202	Thermodynamics of sulfate anion binding by macrocyclic polyammonium receptors. Perkin Transactions II RSC, 2001, , 1765-1770.	1.1	53
203	Polyamines containing naphthyl groups as pH-regulated molecular machines driven by light. Chemical Communications, 2001, , 1520-1521.	4.1	48
204	New Insight to the Chemistry of Polyaza[n]paracyclophanes. A 15N NMR Study. Journal of Organic Chemistry, 2001, 66, 7505-7510.	3.2	8
205	Anion Binding with Two Polyammonium Macrocycles of Different Dimensionality. Inorganic Chemistry, 2001, 40, 4710-4720.	4.0	91
206	CO2fixation and activation by metal complexes of small polyazacyclophanes. Journal of Physical Organic Chemistry, 2001, 14, 495-500.	1.9	14
207	Open-Chain Polyamine Ligands Bearing an Anthracene Unit â [^] Chemosensors for Logic Operations at the Molecular Level. European Journal of Inorganic Chemistry, 2001, 2001, 405-412.	2.0	80
208	Fluorescent Chemosensors Containing Polyamine Receptors. European Journal of Inorganic Chemistry, 2000, 2000, 2143-2157.	2.0	127
209	Structural characterization in solution of multifunctional nucleotide coordination systems. Perkin Transactions II RSC, 2000, , 1323-1328.	1.1	34
210	Dopamine interaction with a polyamine cryptand of 1H-pyrazole in the absence and in the presence of		

#	Article	IF	CITATIONS
217	Voltammetric determination of trace mercury in concentrated chloride media using polymer-film electrodes modified with polyammonium macrocyclic receptors. Analyst, The, 1999, 124, 1661-1667.	3.5	13
218	A thermodynamic, electrochemical and molecular dynamics study on NAD and NADP recognition by 1,4,7,10,13,16,19-heptaazacyclohenicosane ([21]aneN7) â€. Journal of the Chemical Society Perkin Transactions II, 1999, , 23-32.	0.9	19
219	1,4,8,11-Tetrakis(4-ferrocenyl-3-azabutyl)-1,4,8,11-tetraazacyclotetradecane as a ferrocene-functionalised polyammonium receptor for electrochemical anion sensing. Journal of the Chemical Society Dalton Transactions, 1999, , 1779-1784.	1.1	20
220	Thermodynamic and fluorescence emission studies on chemosensors containing anthracene fluorophores. Crystal structure of $\{[Cullc]C]^2\hat{A}\cdot 2H2O$ [L1â \in =â \in N-(3-aminopropyl)-Nâ \in Sâ \in 2-3-(anthracen-9-ylmethyl)aminopropylethane-1,2-diamine]. Journal of the Chemical Society Dalton Transactions, 1999, , 915-922.	1.1	28
221	Polyazacyclophanes containing biphenyl fragments. Chemical Communications, 1999, , 649-650.	4.1	21
222	Synthesis, protonation and Cu2+ co-ordination studies on a new family of thiophenophane receptors â€. Journal of the Chemical Society Perkin Transactions II, 1999, , 1159-1168.	0.9	9
223	The Use of Calculated Species Distribution Diagrams to Analyze Thermodynamic Selectivity. Journal of Chemical Education, 1999, 76, 1727.	2.3	52
224	Thermodynamics of Phosphate and Pyrophosphate Anions Binding by Polyammonium Receptors. Journal of the American Chemical Society, 1999, 121, 6807-6815.	13.7	133
225	Molecular Recognition of Long Dicarboxylate/Dicarboxylic Species via Supramolecular/Coordinative Interactions with Ditopic Receptors. Crystal Structure of $\{[Cu2L(H2O)2] \hat{a} \hat{S}_f Pimelate\}$ (ClO4)2. Inorganic Chemistry, 1999, 38, 620-621.	4.0	55
226	Synthesis and Protonation Behavior of 26-Membered Oxaaza and Polyaza Macrocycles Containing Two Heteroaromatic Units of 3,5-Disubstituted Pyrazole or 1-Benzylpyrazole. A Potentiometric and 1H and 13C NMR Study. Journal of Organic Chemistry, 1999, 64, 6135-6146.	3.2	53
227	One-pot synthesis of polyaza[n]naphthalenophanes and polyaza[n]anthracenophanes. Tetrahedron Letters, 1998, 39, 3799-3802.	1.4	15
228	Synthetic methods for the preparation of polystyrene resins containing chiral polyamine chains. Tetrahedron, 1998, 54, 3581-3588.	1.9	9
229	An efficient preparation of ditopic receptors based on polyaza[n]paracyclophanes. Chemical Communications, 1998, , 1823-1824.	4.1	13
230	Guest-Induced Selective Functionalization of Polyaza[n]paracyclophanes. Journal of Organic Chemistry, 1998, 63, 1810-1818.	3.2	21
231	Thermodynamic and Steady-State Fluorescence Emission Studies on Metal Complexes of Receptors Containing Benzene Subunits. Inorganic Chemistry, 1998, 37, 3935-3942.	4.0	40
232	Pertosylated polyaza[n](9,10)anthracenophanes. Tetrahedron, 1997, 53, 2629-2640.	1.9	28
233	Polyaza[n]paracyclophanes as synthetic models of Zn containing enzymes. The role of a non coordinated nitrogen atom in the proximity of the metal. Tetrahedron, 1997, 53, 4751-4762.	1.9	31
234	A remarkable selectivity in the N-functionalization of polyaza[n]paracyclophanes. Synthesis of N-(4-picolyl)-substituted 2,6,9,13-Tetraaza[14]paracyclophanes. Tetrahedron, 1997, 53, 16169-16176.	1.9	9

#	Article	IF	Citations
235	Outer and inner coordination sphere chemistry of polyazacyclophane platinum(II) complexes. Crystal structure of [PtBr4]2(H4L1) · H2O (L1 = 2,6,9,13-tetraaza[14]paracyclophane). Inorganica Chimica Acta, 1997, 265, 179-186.	2.4	6
236	Effect of Nitrogen Methylation on Cation and Anion Coordination by Hexa- and Heptaazamacrocycles. Catalytic Properties of These Ligands in ATP Dephosphorylation. Inorganic Chemistry, 1996, 35, 1114-1120.	4.0	55
237	Small Azaparacyclophanes as Potential Selective Scavengers of Mercury. Crystal Structure of the Complex $Hg2(L1)Cl4$ ($L1=16,17,19,20$ -Tetramethyl-2,6,9,13-tetraaza[14]paracyclophane). Inorganic Chemistry, 1996, 35, 4591-4596.	4.0	27
238	A reinforced polyaza[n.n]paracyclophane containing piperazine rings. Journal of the Chemical Society Dalton Transactions, 1996, , 239-246.	1.1	12
239	Highly branched ferrocene-functionalised polyazacycloalkanes as electroactive receptors for transition-metal ions. Journal of the Chemical Society Dalton Transactions, 1996, , 2923-2927.	1.1	13
240	Thermodynamic, NMR and photochemical study on the acidâ \in "base behaviour of N,Nâ \in 2-dibenzylated polyamines and on their interaction with hexacyanocobaltate(III). Journal of the Chemical Society Perkin Transactions II, 1996, , 2335-2342.	0.9	20
241	Synthesis and protonation behaviour of the macrocycle 2,6,10,13,17,21-hexaaza[22]metacyclophane. Thermodynamic and NMR studies on the interaction of 2,6,10,13,17,21-hexaaza[22]metacyclophane and on the open-chain polyamine 4,8,11,15-tetraazaoctadecane-1,18-diamine with ATP, ADP and AMP. Inorganica Chimica Acta. 1996. 246. 287-294.	2.4	41
242	Hydrophobic effects in the stabilisation of copper(I) by the macrocyclic ligands 16,17,19,20-tetramethyl-2,6,9,13-tetraaza[14]paracyclophane and 14,15,17,18-tetramethyl-2,5,8,11-tetraaza[12]paracyclophane. Inorganica Chimica Acta, 1996, 252, 123-129.	2.4	15
243	Cyclic voltammetric analysis of pH-dependent complex formation equilibria in anion coordination chemistry. Talanta, 1995, 42, 1663-1673.	5.5	8
244	Steady-state fluorescence emission studies on polyazacyclophane macrocyclic receptors and on their adducts with hexacyanocobaltate(III). Journal of the Chemical Society Dalton Transactions, 1995, , 993-997.	1.1	27
245	Aqueous electrochemistry of mono- and bi-nuclear copper(II) complexes with polyaza[n]paracyclophane ligands. Journal of the Chemical Society Dalton Transactions, 1995, , 541-547.	1.1	16
246	Multifunctional molecular recognition of ATP, ADP and AMP nucleotides by the novel receptor $2,6,10,13,17,21$ -hexaaza [22] metacyclophane. Journal of the Chemical Society Chemical Communications, 1995, .	2.0	68
247	Cyclic voltammetric analysis of pH-dependent complex formation equilibria in anion coordination chemistry. Talanta, 1995, 42, 1663-73.	5.5	1
248	Selective monofunctionalization of polyaza[n]paracyclophanes. Tetrahedron Letters, 1994, 35, 9075-9078.	1.4	15
249	1,10-Dimethyl-1,4,7,10,13,16-hexaazacyclooctadecane L and 1,4,7-trimethyl-1,4,7,10,13,16,19-heptaazacyclohenicosane L1: two new macrocyclic receptors for ATP binding. Synthesis, solution equilibria and the crystal structure of (H4L)(ClO4)4. Journal of the Chemical Society Perkin Transactions II. 1994 2367-2373.	0.9	27
250	Protonation tendencies of azaparacyclophanes. A thermodynamic and NMR study. Journal of the Chemical Society Perkin Transactions II, 1994, , 1253-1259.	0.9	39
251	Mono- and bi-nuclear copper(II) complexes of azaparacyclophanes with a single aromatic spacer. Crystal structure of [Cu2L2Cl4] \hat{A} ·1.5H2O (L2= 2,5,8, 11-tetraaza[12]paracyclophane). Journal of the Chemical Society Dalton Transactions, 1994, , 2995-3004.	1.1	30
252	Selective recognition of carboxylate anions by polyammonium receptors in aqueous solution. Criteria for selectivity in molecular recognition. Journal of the Chemical Society Perkin Transactions II, 1994, , 569-577.	0.9	49

#	Article	IF	Citations
253	Synthesis, protonation and co-ordination abilities of the open-chain polyamine $4,8,11,15$ -tetraazaoctadecane- $1,18$ -diamine. Journal of the Chemical Society Dalton Transactions, $1994,$, 637 - 644 .	1.1	18
254	Oxa-aza macrocyclic molecules as receptors for metal cations. Inorganic Chemistry, 1994, 33, 617-620.	4.0	15
255	N-Tosylated Polyaza[n](1,4)naphthalenophanes. Synthesis and Conformational Studies. Journal of Organic Chemistry, 1994, 59, 1067-1071.	3.2	23
256	Thermodynamic study of the interaction of long open-chain polyazaalkanes with cobalt(II) and nickel(II) ions. Inorganica Chimica Acta, 1993, 204, 221-225.	2.4	14
257	Cascade complex formation by phosphate in the cobalt(II)/[30]aneN10 anaerobic system. Inorganica Chimica Acta, 1993, 204, 227-230.	2.4	9
258	Electrochemical studies on anion coordination chemistry. Application of the molar-ratio method to competitive cyclic voltammetry. Analytical Chemistry, 1993, 65, 3137-3142.	6.5	40
259	Polyazacyclophanes. 2,6,9,13-Tetraaza[14] paracyclophane as a cationic and anionic receptor. Journal of the Chemical Society Perkin Transactions II, 1993, , 749-755.	0.9	40
260	Thermodynamic, kinetic, and structural study of the ligational properties of the macrobicyclic aza-ligand 4,7,10,17,23-pentamethyl-1,4,7,10,13,17,23-heptaazabicyclo[11.7.5]pentacosane (L1) and of its macrocyclic precursor 1,4,7,13-tetramethyl-1,4,7,10,13,16-hexaazacyclooctadecane (L2). Crystal structure of [Zn(L1)(H2O)](BPh4)2. Inorganic Chemistry, 1993, 32, 2753-2760.	4.0	31
261	Interaction of lead(II) with highly-dentate linear and cyclic polyamines. Journal of the Chemical Society Dalton Transactions, 1993, , 3507-3513.	1.1	42
262	An efficient synthesis of polyaza[n]paracyclophanes. Journal of Organic Chemistry, 1993, 58, 4749-4753.	3.2	72
263	Synthesis and ligational behavior toward hydrogen and copper(II) ions of the two new oxa-aza macrocyclic receptors 10,13,16-trimethyl-1,4-dioxa-7,10,13,16,19-pentaazacyclohenicosane (Me3[21]aneN5O2) and 13,16,19-trimethyl-1,4,7-trioxa-10,13,16,19,22-pentaazacyclotetracosane (Me3[24]aneN5O3). Inorganic Chemistry, 1993, 32, 4900-4908.	4.0	20
264	Interaction of hexaazaalkanes with phosphate type anions. Thermodynamic, kinetic, and electrochemical considerations. Inorganic Chemistry, 1993, 32, 3418-3424.	4.0	78
265	Thermodynamic and structural properties of palladium(II) polynuclear complexes of azamacrocycles. Crystal structure of the [Pd2([24]aneN8)] (ClO4)4 complex. Inorganic Chemistry, 1993, 32, 1204-1208.	4.0	14
266	Macrocyclic effect on anion binding. A potentiometric and electrochemical study of the interaction of 21- and 24- membered polyazaalkanes with [Fe(CN)6]4–and [Co(CN)6]3–. Journal of the Chemical Society Dalton Transactions, 1992, , 319-324.	1.1	16
267	Synthesis and protonation behaviour of the macrocyclic ligand 1,4,7,13-tetramethyl-1,4,7,10,13,16-hexaazacyclooctadecane and of its bicyclic derivative 4,7,10,17,23-pentamethyl-1,4,7,10,13,17,23-heptaazabicyclo[11.7.5]-pentacosane. A potentiometric and 1H and 13C NMR study. Journal of the Chemical Society Perkin Transactions II, 1992. 1059-1065.	0.9	20
268	A remarkable shape selectivity in the molecular recognition of carboxylate anions in aqueous solution. Journal of the American Chemical Society, 1992, 114, 1919-1920.	13.7	55
269	Thermodynamic and structural aspects of the interaction between macrocyclic polyammonium cations and complexed anions. Inorganic Chemistry, 1992, 31, 1902-1908.	4.0	45
270	Potential ATPase mimics by polyammonium macrocycles: Criteria for catalytic activity. Bioorganic Chemistry, 1992, 20, 8-29.	4.1	69

#	Article	IF	Citations
271	Interaction of long polyazaalkanes with zinc(II) and cadmium(II) ions. A thermodynamic and 13C nuclear magnetic resonance study. Journal of the Chemical Society Dalton Transactions, 1991, , 3077-3083.	1.1	13
272	N,N′,N″,N‴-(2-Aminoethyl)-1,4,8,11-tetraazacyclotetradecane (TAEC) as a polyammonium receptor for anions. Journal of the Chemical Society Perkin Transactions II, 1991, , 1445-1451.	0.9	15
273	Lithium binder in aqueous solution. Synthesis and characterization of the new cage 4,10,15-trimethyl-1,4,7,10,15-pentaazabicyclo[5.5.5]heptadecane (L). Protonation and lithium complex formation. Crystal structures of [HL][BPh4] and [LiL][BPh4]. Inorganic Chemistry, 1991, 30, 3687-3691.	4.0	30
274	Co-ordination tendency of [3k]aneNkpolyazacycloalkanes. Thermodynamic study of solution equilibria. Journal of the Chemical Society Dalton Transactions, 1991, , 1171-1174.	1.1	39
275	Interaction of "long" open-chain polyazaalkanes with hydrogen and copper(II) ions. Inorganic Chemistry, 1991, 30, 1843-1849.	4.0	47
276	Compounds of molybdenum(VI) with aspartic acid: A spectrophotometric and potentiometric study of the formation and interconversion equilibria in aqueous solution. Transition Metal Chemistry, 1990, 15, 425-428.	1.4	5
277	Interaction of Zn(II) and Cd(II) with large polyazacycloalkanes in dmso/H2O (80:20 vol./vol.). A potentiometric study. Inorganica Chimica Acta, 1990, 172, 203-209.	2.4	4
278	Complex formation equilibria between the acetazolamide ((5-acetamido-1,3,4-thiadiazole)-2-sulphonamide), a potent inhibitor of carbonicanhydrase, and Zn(II),Co(II), Ni(II) and Cu(II) in aqueous and ethanol-aqueous solutions. Journal of Inorganic Biochemistry, 1990, 39, 297-306.	3.5	34
279	(PdCl4)2–inclusion into the deca-charged polyammonium receptor (H10[30]aneN10)10+([30]aneN10=) Tj ETC	Qq1 1 0.7 2.0	784314 rgBT/ 24
280	Di-and tri-palladium(II) polyazacycloalakane complexes. A case of deprotonated secondary nitrogen in solution and in solid state. Journal of the Chemical Society Chemical Communications, 1990 ,, $1382-1384$.	2.0	35
281	Synthesis, crystal structure, magnetic properties, and solution study of the complex µ-oxalato-bis[aqua(1,4,7-triazacyclononane)nickel(II)] nitrate dihydrate. Journal of the Chemical Society Dalton Transactions, 1990, , 2213-2217.	1.1	30
282	Synthesis of heteroleptic violurato complexes of colll. Influence of the co-ordinated ligands on the protonation–deprotonation reactions of dihydrogenviolurate anion. Crystal structure of potassium dihydrogenviolurato(nitrilotriacetato)cobaltate(III) dihydrate, K[Co(H2vi)(nta)]·2H2O. Journal of the Chemical Society Dalton Transactions, 1990, 2565-2570. Oxalato and squarato ligands in nickel(II) complexes of tetraazacycloalkanes. Solution and	1.1	10
283	solid-state studies. Crystal and molecular structures of (.muoxalato)bis[(1,7-dimethyl-1,4,7,10-tetraazacyclododecane)nickel(I)] perchlorate dihydrate and of bis[diaquo(1,4,7,10-tetraazacyclododecane)nickel(II)] squarate diperchlorate. Inorganic Chemistry,	4.0	74
284	Heptacoordination of manganese(II) by the polyazacycloalkane 1,4,7,10,13,16,19-heptaazacycloheneicosane, [21]aneN7. Crystal structure of the [Mn([21]aneN7)](ClO4)2 solid compound and thermodynamics of complexation in water solution. Inorganic Chemistry, 1990, 29, 1716-1718.	4.0	31
285	Structural aspects of the protonation of small cages. Preparation of the new aza-cage 12,17-dimethyl-1,9,12,17-tetra-azabicyclo[7.5.5]nonadecane (L). Thermodynamic studies on solution equilibria. Crystal structures of [H2L][CoCl4] and [H2L1][CoCl4] salts. Journal of the Chemical Society Perkin Transactions II. 1990 209-214.	0.9	23
286	Nickel(II) complexes of $[3k]$ ane Nk polyazacycloalkanes (k = 7-12). Solution and solid-state studies. Inorganic Chemistry, 1989, 28, 3175-3181.	4.0	35
287	Synthesis and characterization of the new macrocyclic cage 5,12,17-trimethyl-1,5,9,12,17-pentaazabicyclo[7.5.5]nonadecane (L), which can selectively encapsulate lithium ion. Thermodynamic studies on protonation and complex formation. Crystal structures of the salt [HL][Cl].cntdot.3H2O and of the lithium complex [LiL][BPh4]. Inorganic Chemistry, 1989, 28,	4.0	47
288	Thermodynamic study of the formation in aqueous solution of cadmium(II) complexes with polyazacycloalkanes. Synthesis and crystal structure of the dicadmium(II) complex Na[Cd2(L)Cl2](ClO4)3 (L = $1,4,7,10,13,16,19,22,25,28$ -decaazacyclotriacontane). Inorganic Chemistry, 1989, 28, 347-351.	4.0	60

#	Article	IF	Citations
289	Polynuclear zinc(II) complexes with large polyazacycloalkanes. 2. Equilibrium studies and crystal structure of the binuclear complex [Zn2LCl2](Cl)ClO4.cntdot.H2O (L =) Tj ETQq1 1 0.784314 rgBT /Overlock 10) Tf4 50 73	7 T d1 (1,4,7, <mark>10</mark>
290	Anaerobic complexation of cobalt(II) by $[3k]$ aneNk (k = 7-12) polyazacycloalkanes. Inorganic Chemistry, 1989, 28, 2480-2482.	4.0	24
291	The small cage 12,17-dimethyl-5-oxa-1,9,12,17-tetra-azabicyclo[7.5.5]nonadecane (L): its synthesis, characterization, and †proton sponge†behaviour. The crystal structure of the dipicrate salt [H2(L)](picrate)2. Journal of the Chemical Society Perkin Transactions II, 1989, , 1131-1137.	0.9	21
292	Selective encapsulation of lithium ion by the new azacage 5,12,17,trimethyl-1,5,9,12,17-penta-azabicyclo[7.5.5]nonadecane (L). Thermodynamic studies and crystal structures of the lithium complex [LiL][BPH4] and of the monoprotonated salt [HL][Cl]·(H2O)3. Journal of the Chemical Society Chemical Communications, 1989, , 701-703.	2.0	16
293	Polynuclear zinc (II) complexes with large polyazacycloalkanes. Equilibrium studies and crystal structure of the binuclear [Zn2([30]aneN10)(NCS)](ClO4)3 complex Inorganic Chemistry, 1988, 27, 1104-1107.	4.0	39
294	Synthesis and ligational properties of the two very large polyazacycloalkanes [33]aneN11 and [36]aneN12 forming trinuclear copper(II) complexes. Inorganic Chemistry, 1988, 27, 176-180.	4.0	49
295	Synthesis, crystal structure, magnetic properties, and thermodynamic and electrochemical studies of the binuclear complex [(.muoxalato)bis[(1,4,8,11-tetraazacyclotetradecane)nickel(II)] nitrate. Inorganic Chemistry, 1988, 27, 4174-4179.	4.0	83
296	Synthesis and complexing properties of the large polyazacycloalkane 1,4,7,10,13,16,19,22,25,28-decaazacyclotriacontane (L). Crystal structure of the monoprotonated dicopper(II) complex [Cu2(L)HCl2](ClO4)3.cntdot.4H2O. Inorganic Chemistry, 1987, 26, 1243-1247.	4.0	48
297	Anion co-ordination chemistry. Crystal structure of the â€~super complex:'[H8L][Co(CN)6]2Cl2·10H2O (L) Communications, 1987, , 729-731.	Tj ETQq1 2.0	1 0.784314 rg
298	Solution chemistry of macrocycles. 5. Synthesis and ligational behavior toward hydrogen and copper(II) ions of the large polyazacycloalkane 1,4,7,10,13,16,19,22,25-nonaazacycloheptacosane ([27]aneN9). Inorganic Chemistry, 1987, 26, 681-684.	4.0	42
299	Anion coordination chemistry. 2. Electrochemical, thermodynamic, and structural studies on supercomplex formation between large polyammonium cycloalkanes and the two complex anions hexacyanoferrate(II) and hexacyanocobaltate(III). Inorganic Chemistry, 1987, 26, 3902-3907.	4.0	66
300	Thermodynamic studies on equilibria between the branched hexaamine N,N,N',N'-tetrakis(3-aminopropyl)ethylenediamine (tapen) and hydrogen manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II) ions. Inorganic Chemistry, 1986, 25, 1435-1438.	4.0	6
301	Synthesis of the new thia-aza cage 12,17-dimethyl-5-thia-1,9,12,17-tetraazabicyclo[7.5.5]nonadecane. Thermodynamic studies on protonation and copper(II) complex formation. Inorganic Chemistry, 1986, 25, 4379-4381.	4.0	27
302	Heats of reaction between the branched hexaamine N,N,N′,N′-tetrakis(3-amino-propyl) ethylenediamine (TAPEN) and hydrogen, Ni(II), Cu(II), Zn(II) ions. Inorganica Chimica Acta, 1986, 117, 165-168.	2.4	6
303	Violurato complexes of nickel(II). Formation equilibria. Deprotonation equilibria of the coordinated ligands and related stereochemical changes. Transition Metal Chemistry, 1986, 11, 1-5.	1.4	5
304	Anion coordination chemistry. Hexacyanoferrate(II) anion complexed by a large polycharged azacycloalkane. Potentiometric and electrochemical studies. Inorganica Chimica Acta, 1985, 102, L9-L11.	2.4	27
305	VIOLURATO COMPLEXES OF Cr(III). SYNTHESIS AND CHARACTERIZATION. PROTONATION-DEPROTONATION EQUILIBRIA OF THE COORDINATED LIGANDS. EVIDENCE OF THE COORDINATION OF VIOLURIC ACID AS A NEUTRAL LIGAND. Journal of Coordination Chemistry, 1982, 12, 41-48.	2.2	8