Qudong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4598151/publications.pdf

Version: 2024-02-01

101384 149479 4,184 133 36 56 citations g-index h-index papers 137 137 137 2189 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effects of rare earths on the microstructure, properties and fracture behavior of Mg–Al alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 278, 66-76.	2.6	260
2	Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy. Journal of Materials Processing Technology, 2007, 182, 281-285.	3.1	195
3	Effect of Nd and Y addition on microstructure and mechanical properties of as-cast Mg–Zn–Zr alloy. Journal of Alloys and Compounds, 2007, 427, 115-123.	2.8	149
4	Microstructure and high tensile ductility of ZK60 magnesium alloy processed by cyclic extrusion and compression. Journal of Alloys and Compounds, 2009, 476, 441-445.	2.8	109
5	Microstructure and super high strength of cast Mg-8.5Gd-2.3Y-1.8Ag-0.4Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 323-328.	2.6	106
6	Behavior of Mg–15Gd–5Y–0.5Zr alloy during solution heat treatment from 500 to 540°C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 459, 117-123.	2.6	102
7	Effect of Ag on interfacial segregation in Mg–Gd–Y–(Ag)–Zr alloy. Acta Materialia, 2015, 95, 20-29.	3.8	95
8	Effects of strontium and titanium on the microstructure, tensile properties and creep behavior of AM50 alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 444, 318-326.	2.6	84
9	Microstructure evolution of AZ series magnesium alloys during cyclic extrusion compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 2265-2273.	2.6	84
10	Behavior of surface oxidation on molten Mg–9Al–0.5Zn–0.3Be alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001, 301, 154-161.	2.6	75
11	An investigation into interface formation and mechanical properties of aluminum–copper bimetal by squeeze casting. Materials and Design, 2016, 89, 1137-1146.	3.3	70
12	Hot deformation and processing maps of as-extruded Mg–9.8Gd–2.7Y–0.4Zr Mg alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 576, 101-107.	2.6	67
13	Effect of Rare Earth Metals on the Microstructure and Impact Toughness of a Cast 0.4C-5Cr-1.2Mo-1.0V Steel ISIJ International, 2000, 40, 1275-1282.	0.6	63
14	An understanding of the hot tearing mechanism in AZ91 magnesium alloy. Materials Letters, 2002, 53, 35-39.	1.3	62
15	Effects of Zn and RE additions on the solidification behavior of Mg–9Al magnesium alloy. Materials Science & Science & Properties, Microstructure and Processing, 2003, 342, 178-182.	2.6	61
16	Effect of Sm on the microstructure, mechanical properties and creep behavior of Mg–0.5Zn–0.4Zr based alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1677-1685.	2.6	59
17	Microstructure and mechanical properties of AZ31 magnesium alloy processed by cyclic closed-die forging. Journal of Alloys and Compounds, 2013, 558, 164-171.	2.8	59
18	Comparison of microstructure in Mg–10Y–5Gd–0.5Zr and Mg–10Y–5Gd–2Zn–0.5Zr alloys by conventional casting. Journal of Alloys and Compounds, 2009, 477, 374-378.	2.8	58

#	Article	IF	CITATIONS
19	Effects of heat treatments on Microstructure and mechanical properties of Mg–4Y–4Sm–0.5Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007, 448, 165-170.	2.6	57
20	The elevated-temperature mechanical behavior of peak-aged Mg–10Gd–3Y–0.4Zr Alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 3105-3112.	2.6	56
21	Effects of Sr content on the microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8Mg alloys. Journal of Alloys and Compounds, 2015, 622, 572-579.	2.8	54
22	Effects of Nd on microstructure and mechanical properties of cast Al-Si-Cu-Ni-Mg piston alloys. Journal of Alloys and Compounds, 2017, 695, 1566-1572.	2.8	54
23	Effect of Sb on the microstructure and mechanical properties of AZ91 magnesium alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2001, 32, 787-794.	1.1	53
24	An investigation into aluminum–aluminum bimetal fabrication by squeeze casting. Materials & Design, 2015, 68, 8-17.	5.1	53
25	Characterization of phases in Mg–4Y–4Sm–0.5Zr alloy processed by heat treatment. Materials Science & Lamp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 428, 295-300.	2.6	52
26	Optimization of high-pressure die-casting process parameters using artificial neural network. International Journal of Advanced Manufacturing Technology, 2009, 44, 667-674.	1.5	50
27	Microstructure and enhanced mechanical properties of an Mg–10Gd–2Y–0.5Zr alloy processed by cyclic extrusion and compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 1143-1148.	2.6	50
28	Enhanced Strength and Ductility Due to Microstructure Refinement and Texture Weakening of the GW102K Alloy by Cyclic Extrusion Compression. Journal of Materials Science and Technology, 2016, 32, 783-789.	5.6	48
29	A new high-strength and corrosion-resistant Al–Si based casting alloy. Materials Letters, 2013, 97, 104-107.	1.3	46
30	Strengthening and toughening mechanisms of an ultrafine grained Mg-Gd-Y-Zr alloy processed by cyclic extrusion and compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 699, 26-30.	2.6	46
31	Enhanced microstructure homogeneity and mechanical properties of AZ31–Si composite by cyclic closed-die forging. Journal of Alloys and Compounds, 2013, 552, 409-417.	2.8	44
32	Hot deformation constitutive model and processing maps of homogenized Al–5Mg–3Zn–1Cu alloy. Journal of Materials Research and Technology, 2021, 14, 324-339.	2.6	43
33	Tensile creep behavior and microstructure evolution of extruded Mg–10Gd–3Y–0.5Zr (wt%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 150-159.	2.6	42
34	Microstructure evolution and mechanical properties of SiC nanoparticles reinforced magnesium matrix composite processed by cyclic closed-die forging. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 642, 49-56.	2.6	42
35	Effects of cyclic extrusion and compression on the microstructure and mechanical properties of AZ91D magnesium composites reinforced by SiC nanoparticles. Materials Characterization, 2017, 126, 17-27.	1.9	42
36	Effect of T6 heat treatment on microstructure and mechanical property of 6101/A356 bimetal fabricated by squeeze casting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 696, 208-215.	2.6	40

#	Article	IF	Citations
37	Microstructure refinement of Mg-Al-RE alloy by Gd addition. Materials Letters, 2019, 246, 125-128.	1.3	39
38	A new metastable precipitate phase in Mg–Gd–Y–Zr alloy. Philosophical Magazine, 2014, 94, 2403-2409.	0.7	38
39	Microstructure and mechanical properties of the carbon nanotubes reinforced AZ91D magnesium matrix composites processed by cyclic extrusion and compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 689, 427-434.	2.6	37
40	Behavior of Mg–Al–Ca alloy during solution heat treatment at 415 °C. Journal of Materials Science Letters, 2002, 21, 1281-1283.	0.5	35
41	Effect of SiC particles and the particulate size on the hot deformation and processing map of AZ91 magnesium matrix composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 707, 315-324.	2.6	35
42	Effect of the Cyclic Extrusion and Compression Processing on Microstructure and Mechanical Properties of As-Extruded ZK60 Magnesium Alloy. Materials Transactions, 2008, 49, 1021-1024.	0.4	33
43	Effects of heat treatments on microstructure and mechanical properties of Mg-15Gd-5Y-0.5Zr alloy. Journal of Rare Earths, 2008, 26, 298-302.	2.5	32
44	Microstructure and mechanical properties of hot-rolled Mg–Zn–Nd–Zr alloys. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2008, 483-484, 228-230.	2.6	32
45	Gd contents, mechanical and corrosion properties of Mg–10Gd–3Y–0.5Zr alloy purified by fluxes containing GdCl3 additions. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 507, 207-214.	2.6	32
46	Microstructural refinement and homogenization of Mg–SiC nanocomposites by cyclic extrusion compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 556, 267-270.	2.6	32
47	Creep and Fracture Behavior of Peak-Aged Mg-11Y-5Gd-2Zn-0.5Zr (wtÂpct). Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2012, 43, 3338-3350.	1.1	32
48	A Novel Method to Achieve Grain Refinement in Aluminum. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 4788-4794.	1.1	32
49	Hot-tearing susceptibility of Mg–9Al–xZn alloy. Materials Letters, 2002, 57, 929-934.	1.3	31
50	High strength extruded Mg–5Zn–2Nd–1.5Y–0.6Zr–0.4Ca alloy produced by electromagnetic casting. Materials Letters, 2005, 59, 2549-2554.	1.3	31
51	Effect of Cooling Rate on the Microstructure and Mechanical Properties of Cu/Al Bimetal Fabricated by Compound Casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 661-672.	1.1	31
52	Microstructure and mechanical properties of extruded Mg–8.5Gd–2.3Y–1.8Ag–0.4Zr alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 1891-1895.	1.7	29
53	Bonding of Aluminum Alloys in Compound Casting. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4632-4644.	1.1	29
54	Microstructure and Mechanical Properties of Overcast 6101–6101 Wrought Al Alloy Joint by Squeeze Casting. Journal of Materials Science and Technology, 2016, 32, 298-304.	5.6	28

#	Article	IF	CITATIONS
55	Uniform fine microstructure and random texture of Mg–9.8Gd–2.7Y–0.4Zr magnesium alloy processed by repeated-upsetting deformation. Materials Letters, 2012, 83, 175-178.	1.3	27
56	Evaluation of the effect of vacuum on mold filling in the magnesium EPC process. Journal of Materials Processing Technology, 2002, 120, 94-100.	3.1	26
57	Influence of flux containing YCl3 additions on purifying effectiveness and properties of Mg–10Gd–3Y–0.5Zr alloy. Journal of Alloys and Compounds, 2009, 480, 386-391.	2.8	26
58	Microstructure and texture characteristics of ZK60 Mg alloy processed by cyclic extrusion and compression. Transactions of Nonferrous Metals Society of China, 2010, 20, 2081-2085.	1.7	26
59	Fabrication of bulk UFG magnesium alloys by cyclic extrusion compression. Journal of Materials Science, 2007, 42, 7601-7603.	1.7	24
60	Creep behavior of Mg–9Gd–1Y–0.5Zr (wt.%) alloy piston by squeeze casting. Materials Characterization, 2013, 78, 37-46.	1.9	23
61	Influence of Gd content on microstructure and mechanical properties of cast Al–12Si–4Cu–2Ni–0.8Mg alloys. Journal of Alloys and Compounds, 2015, 644, 228-235.	2.8	23
62	Effect of homogenization on the microstructure and mechanical properties of the repetitive-upsetting processed AZ91D alloy. Journal of Materials Science and Technology, 2017, 33, 935-940.	5.6	23
63	Damping characterization and its underlying mechanisms in CNTs/AZ91D composite processed by cyclic extrusion and compression. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 821, 141605.	2.6	23
64	Consolidation behavior of Mg–10Gd–2Y–0.5Zr chips during solid-state recycling. Journal of Alloys and Compounds, 2010, 503, 253-259.	2.8	22
65	Elevated-temperature impact toughness of Mg–(Gd, Y)–Zr alloy. Scripta Materialia, 2013, 68, 885-888.	2.6	22
66	Study on deformation behavior and strain homogeneity during cyclic extrusion and compression. Journal of Materials Science, 2008, 43, 6920-6924.	1.7	21
67	Dry sliding wear behaviour of Mg–10Gd–3Y–0.4Zr alloy. Materials & Design, 2012, 42, 223-229.	5.1	21
68	Microstructure and mechanical properties of NZ30K magnesium alloy processed by repetitive upsetting. Journal of Alloys and Compounds, 2014, 589, 372-377.	2.8	21
69	Creep and fracture behavior of as-cast Mg–11Y–5Gd–2Zn–0.5Zr (wt%). Journal of Materials Science, 2012, 47, 6263-6275.	1.7	20
70	The influence of Al–10Sr or/ and Al–5Ti–1B on microstructure and mechanical properties of Al–12Si–4Cu–2Ni–0.8–Mg alloys. Journal of Alloys and Compounds, 2019, 809, 151856.	2.8	20
71	Effect of Si on the precipitation behavior of Mg-6Al alloy. Journal of Materials Science Letters, 2001, 20, 397-399.	0.5	19
72	High temperature compressive deformation behavior of an extruded Mg–8Gd–3Y–0.5Zr (wt.%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 526, 150-155.	2.6	18

#	Article	IF	Citations
73	Effect of solidification sequence on the microstructure and mechanical properties of die-cast Al–11Si–2Cu–Fe alloy. Journal of Alloys and Compounds, 2015, 649, 679-686.	2.8	18
74	Microstructure and creep behavior of the extruded Mg–4Y–4Sm–0.5Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 516, 189-192.	2.6	17
75	Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression. Journal of Magnesium and Alloys, 2023, 11, 1608-1617.	5.5	17
76	Precipitate phases in the Mg-4Y-4Sm-0.5Zr alloy. Journal of Alloys and Compounds, 2008, 465, 119-126.	2.8	16
77	Microstructure and high tensile strength of Mg–10Gd–2Y–0.5Zr alloy by solid-state recycling. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 528, 715-720.	2.6	16
78	Effects of Ho on the microstructure and mechanical properties of Mg-Zn-Ho-Zr magnesium alloys. Rare Metals, 2011, 30, 131-136.	3.6	16
79	Effects of ECAP and Annealing Treatment on the Microstructure and Mechanical Properties of Mg-1Y (wt. %) Binary Alloy. Metals, 2017, 7, 119.	1.0	16
80	Effects of samarium on microstructure and mechanical properties of Mg–Y–Sm–Zr alloys during thermo-mechanical treatments. Journal of Materials Science, 2009, 44, 3049-3056.	1.7	15
81	Effects of flux containing YCl3 on the yttrium loss, mechanical and corrosion properties of Mg–10Gd–3Y–0.5Zr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 1510-1515.	2.6	15
82	The microstructure, mechanical properties and creep behavior of Mg–3Sm–0.5Zn–0.4Zr (wt.%) alloy produced by different casting technologies. Journal of Alloys and Compounds, 2010, 496, 351-356.	2.8	15
83	Mechanical properties and corrosion resistance of Mg–10Gd–2Y–0.5Zr alloy by hot extrusion solid-state recycling. Journal of Alloys and Compounds, 2013, 561, 184-192.	2.8	15
84	Effect of melting technique on the microstructure and mechanical properties of AZ91 commercial magnesium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 429, 320-323.	2.6	13
85	High strain rate superplasticity of rolled AZ91 magnesium alloy. Rare Metals, 2008, 27, 46-49.	3.6	13
86	Microstructure and mechanical properties of AZ31–Mg2Si in situ composite fabricated by repetitive upsetting. Transactions of Nonferrous Metals Society of China, 2014, 24, 3755-3761.	1.7	13
87	Influence of Grain Size and Texture on the Yield Strength of Mg Alloys Processed by Severe Plastic Deformation. Advances in Materials Science and Engineering, 2014, 2014, 1-9.	1.0	13
88	Effects of Melt-to-Solid Volume Ratio and Pouring Temperature on Microstructures and Mechanical Properties of Cu/Al Bimetals in Compound Casting Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 401-414.	1.1	13
89	Evaluation of interface structure and high-temperature tensile behavior in Cu/Al8011/Al5052 trilayered composite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 798, 140129.	2.6	13
90	Finite element simulation and experimental investigation on homogeneity of Mg-9.8Gd-2.7Y-0.4Zr magnesium alloy processed by repeated-upsetting. Journal of Materials Processing Technology, 2015, 225, 310-317.	3.1	12

#	Article	IF	CITATIONS
91	Microstructure evolution and mechanical properties of AZ91D magnesium alloy processed by repetitive upsetting. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2015, 641, 62-70.	2.6	12
92	Study on solution and aging heat treatment of a super high strength cast Mg-7.8Gd-2.7Y-2.0Ag-0.4Zr alloy. Materials Science & Structural Materials: Properties, Microstructure and Processing, 2022, 849, 143523.	2.6	12
93	Centrifugally cast Zn–27Al–xMg–ySi alloys and their in situ (Mg2Si+Si)/ZA27 composites. Materials Science & Science & and Processing, 2005, 394, 425-434.	2.6	11
94	Effect of lanthanum content on microstructure and mechanical properties of Al–5Mg–2Si-0.6Mn alloy in squeeze casting. Journal of Materials Research and Technology, 2021, 15, 6025-6033.	2.6	11
95	Superplastic Behavior and Microstructural Evolution in a Commercial Mg-3Al-1Zn Magnesium Alloy. Materials Transactions, 2002, 43, 2433-2436.	0.4	10
96	Finite element analysis of strain distribution in ZK60 Mg alloy during cyclic extrusion and compression. Transactions of Nonferrous Metals Society of China, 2012, 22, 1902-1906.	1.7	10
97	Microstructure and mechanical properties of overcast aluminum joints. Transactions of Nonferrous Metals Society of China, 2015, 25, 1064-1072.	1.7	10
98	Experimental and numerical analysis of Cu/Al8011/Al1060 trilayered composite: a comprehensive study. Journal of Materials Research and Technology, 2020, 9, 14695-14707.	2.6	10
99	Effects of Titanium Addition on the Microstructural and Mechanical Property Evolution of FeCrB Alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 4610-4622.	1.1	10
100	Functionally graded Zn-Al-Si in-situ composites fabricated by centrifugal casting. Journal of Materials Science Letters, 2001, 20, 823-826.	0.5	9
101	In situ surface composites of (Mg2Si+Si)/ZA27 fabricated by centrifugal casting. Materials Letters, 2003, 57, 3851-3858.	1.3	9
102	Metal foam stabilization by copper-coated carbon fibers. Scripta Materialia, 2013, 68, 459-462.	2.6	9
103	Characterization of the Aging Precipitates of Al-12Si-4Cu-2Ni-0.8Mg-0.2Gd Piston Alloy. Jom, 2019, 71, 366-372.	0.9	9
104	Experimental and Theoretical Research on the Corrosion Resistance of Ferrous Alloys in Aluminum Melts. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 4665-4676.	1.1	9
105	Effects of additive NaI on electrodeposition of Al coatings in AlCl3-NaCl-KCl molten salts. Frontiers of Chemical Science and Engineering, 2021, 15, 138-147.	2.3	9
106	Characteristic investigation of trilayered Cu/Al8011/Al1060 composite: Interface morphology, microstructure, and in-situ tensile deformation. Progress in Natural Science: Materials International, 2021, 31, 679-687.	1.8	9
107	Anisotropic plastic deformation behavior of as-extruded ZK60 magnesium alloy at room temperature. Science in China Series D: Earth Sciences, 2009, 52, 161-165.	0.9	8
108	Effect of zinc additions on the microstructure mechanical properties and creep behavior of as-cast Mg–3Sm–0.4Zr (wt.%) alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 4605-4612.	2.6	8

#	Article	IF	CITATIONS
109	Friction and wear behavior of Mg–11Y–5Gd–2Zn–0.5Zr (wt%) alloy with oil lubricant. Rare Metals, 2013, 32, 453-458.	3.6	8
110	Dry Sliding Wear Properties of AZ31-Mg2Si Magnesium Matrix Composites. Journal of Materials Engineering and Performance, 2016, 25, 4109-4114.	1.2	8
111	Tribological Behavior of Carbon Nanotube-Reinforced AZ91D Composites Processed by Cyclic Extrusion and Compression. Tribology Letters, 2018, 66, 1.	1.2	8
112	An Investigation on Microstructures and Mechanical Properties of Ultra-Low Cu Layer Thickness Ratio Cu/8011/1060 Clads. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2019, 50, 5866-5876.	1.1	8
113	Effects of Thermal Exposure on the Microstructure and Mechanical Properties of Al-Si-Cu-Ni-Mg-Gd Alloy. Journal of Materials Engineering and Performance, 2019, 28, 908-915.	1.2	8
114	Effects of Gd Addition on the Microstructure and Tensile Properties of Mg–4Al–5RE Alloy Produced by Three Different Casting Methods. Acta Metallurgica Sinica (English Letters), 2021, 34, 1361-1374.	1.5	8
115	Effects of aging on the microstructures and mechanical properties of extruded AM50 + xCa magnesium alloys. Rare Metals, 2006, 25, 377-381.	3.6	7
116	Characterization of phases in Mg-10Y-5Gd-2Zn-0.5Zr alloy processed by heat treatment. Transactions of Nonferrous Metals Society of China, 2010, 20, 2076-2080.	1.7	7
117	Analysis of Slip Activity and Deformation Modes in Tension and Tension-Creep Tests of Cast Mg-10Gd-3Y-0.5Zr (Wt Pct) at Elevated Temperatures Using In Situ SEM Experiments. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2421-2443.	1.1	7
118	Effective inhibition of anomalous grain coarsening in cast AZ91 alloys during fast cooling via nanoparticle addition. Journal of Magnesium and Alloys, 2023, 11, 4575-4588.	5.5	7
119	Fluidity of Mg–Al–Ca alloys in the high-pressure die casting process. International Journal of Materials Research, 2007, 98, 33-38.	0.1	5
120	Influence of Grain Refinement and Texture Evolution on the Yield Strength of Mg Alloy Processed by Cyclic Extrusion and Compression. Materials Transactions, 2014, 55, 120-122.	0.4	5
121	Wear Properties of Hot-Extruded Pure Mg and Mg-1Âwt.% SiC Nanocomposite. Journal of Materials Engineering and Performance, 2015, 24, 2774-2778.	1.2	5
122	Electrodeposition of Aluminum Coatings from AlCl3-NaCl-KCl Molten Salts with TMACl and Nal Additives. Materials, 2020, 13, 5506.	1.3	5
123	Extra Strain Hardening in High Pressure Die Casting Mg-Al-RE Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 1487-1492.	1.1	5
124	Damping capacity of SiCw/MgLiAl composites. Journal of Materials Science Letters, 2001, 20, 327-329.	0.5	3
125	Effect of Ce on the Microstructure and Corrosion Resistance of Al-5Mg-3Zn-1Cu Alloy. Metals, 2022, 12, 371.	1.0	3
126	<i>In-Situ</i> Study on Deformation Behavior of ZK60 Alloy Processed by Cyclic Extrusion and Compression. Materials Transactions, 2014, 55, 1180-1183.	0.4	2

#	Article	IF	Citations
127	Effects of cyclic closed-die forging on the microstructural evolution and mechanical properties of SiC/AZ91D nanocomposites. International Journal of Modern Physics B, O, , .	1.0	2
128	Influence of calcium on ignition-proof mechanism of AM50 magnesium alloy. Journal of Materials Science, 2022, 57, 7719-7728.	1.7	2
129	Effect of zinc addition on microstructure and mechanical properties of Mg–7Y–3Sm–0.5Zr alloy. Transactions of Nonferrous Metals Society of China, 2012, 22, 1924-1929.	1.7	1
130	Microstructure and Mechanical Properties of Squeeze Cast Al-5ÂMg-3Zn-1Cu-1Si Alloy Along Cross Section. Metals and Materials International, 2020, 27, 3776.	1.8	1
131	Heat Treatment-Induced Microstructure and Property Evolution of Mg/Al Intermetallic Compound Coatings Prepared by Al Electrodeposition on Mg Alloy from Molten Salt Electrolytes. Materials, 2021, 14, 1407.	1.3	1
132	Indentation Creep Behavior of Mg-10Gd-3Y-0.5Zr (wt.%) Alloy at Elevated Temperatures., 2014,, 65-70.		0
133	Applicability of Mg -Zn-(Y, Gd) Alloys for Engine Pistons. , 2016, , 325-330.		0