Kwang-Wook Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4597947/publications.pdf

Version: 2024-02-01

933447 1058476 42 272 10 14 citations g-index h-index papers 43 43 43 393 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A methodological review on material growth and synthesis of solar-driven water splitting photoelectrochemical cells. RSC Advances, 2019, 9, 30112-30124.	3.6	24
2	A highly sensitive, large area, and self-powered UV photodetector based on coalesced gallium nitride nanorods/graphene/silicon (111) heterostructure. Applied Physics Letters, 2020, 117, .	3.3	23
3	Nanoporous GaN/ <i>n-</i> type GaN: A Cathode Structure for ITO-Free Perovskite Solar Cells. ACS Energy Letters, 2020, 5, 3295-3303.	17.4	23
4	Fabrication and analysis of thin-film GaAs solar cell on flexible thermoplastic substrate using a low-pressure cold-welding. Current Applied Physics, 2015, 15, 1312-1317.	2.4	19
5	Tunable dual-wavelength absorption switch with graphene based on an asymmetric guided-mode resonance structure. Optics Express, 2021, 29, 7307.	3.4	16
6	Defects in Cd3As2 epilayers via molecular beam epitaxy and strategies for reducing them. Physical Review Materials, 2019, 3, .	2.4	14
7	Mapping the structural, electrical, and optical properties of hydrothermally grown phosphorus-doped ZnO nanorods for optoelectronic device applications. Nanoscale Research Letters, 2019, 14, 110.	5.7	11
8	Band gap tunability of molecular beam epitaxy grown lateral composition modulated GalnP structures by controlling V/III flux ratio. Applied Physics Letters, 2012, 101, 051903.	3.3	10
9	Enhancement of minority carrier lifetime of GalnP with lateral composition modulation structure grown by molecular beam epitaxy. Journal of Applied Physics, 2014, 116, .	2.5	10
10	Tailoring Heterovalent Interface Formation with Light. Scientific Reports, 2017, 7, 8516.	3.3	10
11	Effect of ZnSe/GaAs interface treatment in ZnSe quality control for optoelectronic device applications. Applied Surface Science, 2017, 405, 247-254.	6.1	9
12	Selective and Sensitive Photon Sieve Based on III–V Semiconductor Nanowire Forest Fabricated by Lithographyâ€Free Process. Advanced Optical Materials, 2020, 8, 2000198.	7.3	9
13	Investigation of GaAs surface treatments for ZnSe growth by molecular beam epitaxy without a buffer layer. Applied Surface Science, 2021, 549, 149245.	6.1	9
14	Evolutionary growth of microscale single crystalline GaN on an amorphous layer by the combination of MBE and MOCVD. CrystEngComm, 2015, 17, 5849-5859.	2.6	8
15	Observation and tunability of room temperature photoluminescence of GaAs/GalnAs core-multiple-quantum-well shell nanowire structure grown on Si (100) by molecular beam epitaxy. Nanoscale Research Letters, 2014, 9, 626.	5.7	7
16	Critically coupled Fabry–Perot cavity with high signal contrast for refractive index sensing. Scientific Reports, 2021, 11, 19575.	3.3	7
17	RCEPD With Enhanced Light Absorption by Crown-Shaped Quantum Well. IEEE Photonics Technology Letters, 2015, 27, 2047-2050.	2.5	6
18	THz behavior originates from different arrangements of coalescent GaN nanorods grown on Si (111) and Si (100) substrates. Applied Surface Science, 2020, 522, 146422.	6.1	6

#	Article	IF	CITATIONS
19	Improvement of the optical property and uniformity of self-assembled InAs/InGaAs quantum dots by layer-by-layer temperature and substrate rotation. Physica E: Low-Dimensional Systems and Nanostructures, 2008, 40, 3160-3165.	2.7	5
20	Optical and structural properties of microcrystalline GaN on an amorphous substrate prepared by a combination of molecular beam epitaxy and metal–organic chemical vapor deposition. Japanese Journal of Applied Physics, 2016, 55, 05FB03.	1.5	5
21	Controlling ZnSe/GaAs interface properties: The role of elemental exposure and photon irradiation during growth initiation. Journal of Applied Physics, 2018, 124, .	2.5	4
22	Dual-guiding-layer resonance structure with an embedded metasurface for quasi-critical coupling without a perfect mirror. Scientific Reports, 2020, 10, 16014.	3.3	4
23	Realization and optimization of optical logic gates using bias assisted carrier-injected triple parallel microring resonators. Results in Optics, 2021, 4, 100090.	2.0	4
24	Effect of post-annealing process on the optical properties of lateral composition-modulated GaInP structure grown by molecular beam epitaxy. Journal of Materials Science, 2014, 49, 1034-1040.	3.7	3
25	Robust optical properties of sandwiched lateral composition modulation GalnP structure grown by molecular beam epitaxy. Applied Physics Letters, 2016, 109, .	3.3	3
26	Strong emission of THz radiation from GaAs microstructures on Si. AIP Advances, 2018, 8, 125027.	1.3	3
27	Detailed analysis and performance limiting mechanism of Si delta-doped GaAs tunnel diode grown by MBE. Japanese Journal of Applied Physics, 2018, 57, 120306.	1.5	3
28	Advanced realization and characterization of directed optical logic gates using electroabsorptive quantum-well-based micro ring resonator. Optik, 2020, 221, 164426.	2.9	3
29	Influence of thermal treatment and electron-blocking layers on the optical properties of InGaP/InGaAlP MQW structures for red RCLEDs. Semiconductor Science and Technology, 2010, 25, 085012.	2.0	2
30	Optical properties and carrier dynamics of GaAs/GaInAs multiple-quantum-well shell grown on GaAs nanowire by molecular beam epitaxy. Current Applied Physics, 2016, 16, 1622-1626.	2.4	2
31	Unveiling interfaces between In-rich and Ga-rich GaInP vertical slabs of laterally composition modulated structures. Applied Physics Express, 2017, 10, 025801.	2.4	2
32	Detailed carrier recombination in lateral composition modulation structure. Applied Physics Express, 2018, 11, 095801.	2.4	2
33	The criteria in above-bandgap photo-irradiation in molecular beam epitaxy growth of heterostructure of dissimilar growth temperature. Applied Surface Science, 2021, 569, 151067.	6.1	2
34	High efficient 635nm resonant-cavity light-emitting diodes with modified electron stopped layers. , 2009, , .		1
35	Effect of GaAs interlayer thickness variations on the optical properties of multiple InAs QD structure. Physica Status Solidi C: Current Topics in Solid State Physics, 2009, 6, 879-882.	0.8	1
36	Effect of interfacial AsH3 surge treatment on GaInP/GaAs dual-junction solar cells grown by metal–organic vapor phase epitaxy. Japanese Journal of Applied Physics, 2018, 57, 080311.	1.5	1

#	Article	IF	CITATIONS
37	Effect of Temperature on Optical and Electronic Properties of InGaP/InGaAlP Multiple Quantum Wells. Journal of Nanoscience and Nanotechnology, 2012, 12, 5843-5846.	0.9	0
38	Atomic variations in digital alloy InGaP/InGaAlP multiple quantum wells due to thermal treatment. Japanese Journal of Applied Physics, 2014, 53, 115201.	1.5	0
39	Directional Terahertz Radiation from GalnP Lateral Superlattice. Journal of Nanoscience and Nanotechnology, 2015, 15, 5171-5174.	0.9	O
40	Growth optimization of InAs/GaAs quantum dots and performance enhancement of a GaAs tunnel diode by embedding quantum dots for solar cell application. Semiconductor Science and Technology, 2015, 30, 075008.	2.0	0
41	Suppressing nonradiative recombination in crown-shaped quantum wells. Japanese Journal of Applied Physics, 2018, 57, 030305.	1.5	0
42	Photon Sieving: Selective and Sensitive Photon Sieve Based on Ill–V Semiconductor Nanowire Forest Fabricated by Lithographyâ€Free Process (Advanced Optical Materials 17/2020). Advanced Optical Materials, 2020, 8, 2070070.	7. 3	0