
MÃ;rcio Fernando Bergamini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4597835/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemical determination of copper ions in spirit drinks using carbon paste electrode modified with biochar. Food Chemistry, 2015, 171, 426-431.	8.2	132
2	Voltammetric Determination of the Antioxidant Capacity in Wine Samples Using a Carbon Nanotube Modified Electrode. Journal of Agricultural and Food Chemistry, 2011, 59, 7620-7625.	5.2	131
3	A disposable electrochemical sensor for the rapid determination of levodopa. Journal of Pharmaceutical and Biomedical Analysis, 2005, 39, 54-59.	2.8	98
4	The use of activated biochar for development of a sensitive electrochemical sensor for determination of methyl parathion. Journal of Electroanalytical Chemistry, 2017, 799, 602-608.	3.8	92
5	An electrochemical sensor for l-dopa based on oxovanadium-salen thin film electrode applied flow injection system. Sensors and Actuators B: Chemical, 2007, 122, 549-555.	7.8	88
6	Voltammetric determination of L-dopa using an electrode modified with trinuclear ruthenium ammine complex (Ru-red) supported on Y-type zeolite. Talanta, 2004, 63, 1083-1088.	5.5	83
7	Application of a Glassy Carbon Electrode Modified with Poly(Glutamic Acid) in Caffeic Acid Determination. Mikrochimica Acta, 2005, 151, 127-134.	5.0	76
8	Low cost microfluidic device based on cotton threads for electroanalytical application. Lab on A Chip, 2016, 16, 345-352.	6.0	76
9	Determination of isoniazid in human urine using screen-printed carbon electrode modified with poly-l-histidine. Bioelectrochemistry, 2010, 77, 133-138.	4.6	75
10	Development of a voltammetric sensor for chromium(VI) determination in wastewater sample. Sensors and Actuators B: Chemical, 2007, 123, 902-908.	7.8	71
11	Nonenzymatic electrochemical sensor based on imidazole-functionalized graphene oxide for progesterone detection. Biosensors and Bioelectronics, 2018, 112, 108-113.	10.1	69
12	Gold nanoparticles supported on multi-walled carbon nanotubes produced by biphasic modified method and dopamine sensing application. Sensors and Actuators B: Chemical, 2017, 243, 43-50.	7.8	68
13	Electroanalytical thread-device for estriol determination using screen-printed carbon electrodes modified with carbon nanotubes. Sensors and Actuators B: Chemical, 2017, 241, 978-984.	7.8	67
14	Voltammetric sensor for amoxicillin determination in human urine using polyglutamic acid/glutaraldehyde film. Sensors and Actuators B: Chemical, 2008, 133, 398-403.	7.8	66
15	Biochar prepared from castor oil cake at different temperatures: A voltammetric study applied for Pb2+, Cd2+ and Cu2+ ions preconcentration. Journal of Hazardous Materials, 2016, 318, 526-532.	12.4	66
16	An electroanalytical approach for evaluation of biochar adsorption characteristics and its application for Lead and Cadmium determination. Bioresource Technology, 2013, 143, 40-45.	9.6	65
17	One material, multiple functions: graphene/Ni(OH)2 thin films applied in batteries, electrochromism and sensors. Scientific Reports, 2016, 6, 33806.	3.3	65
18	Tear glucose detection combining microfluidic thread based device, amperometric biosensor and microflow injection analysis. Biosensors and Bioelectronics, 2017, 98, 161-167.	10.1	61

#	Article	IF	CITATIONS
19	Flow injection amperometric determination of isoniazid using a screen-printed carbon electrode modified with silver hexacyanoferrates nanoparticles. Sensors and Actuators B: Chemical, 2012, 171-172, 795-802.	7.8	60
20	Activated biochar: Preparation, characterization and electroanalytical application in an alternative strategy of nickel determination. Analytica Chimica Acta, 2017, 983, 103-111.	5.4	59
21	Evaluation of a carbon paste electrode modified with organofunctionalized amorphous silica in the cadmium determination in a differential pulse anodic stripping voltammetric procedure. Talanta, 2003, 59, 1021-1028.	5.5	56
22	3D-printed electrode as a new platform for electrochemical immunosensors for virus detection. Analytica Chimica Acta, 2021, 1147, 30-37.	5.4	56
23	PVP-capped nickel nanoparticles: Synthesis, characterization and utilization as a glycerol electrosensor. Sensors and Actuators B: Chemical, 2014, 196, 574-581.	7.8	55
24	Characterization and optimization of low cost microfluidic thread based electroanalytical device for micro flow injection analysis. Analytica Chimica Acta, 2017, 951, 108-115.	5.4	54
25	Poly(glutamic acid) nanofibre modified glassy carbon electrode: Characterization by atomic force microscopy, voltammetry and electrochemical impedance. Electrochimica Acta, 2008, 53, 3991-4000.	5.2	53
26	Facile synthesis of a silver nanoparticles/polypyrrole nanocomposite for non-enzymatic glucose determination. Materials Science and Engineering C, 2017, 75, 88-94.	7.3	51
27	Electrochemical sensor based on biochar and reduced graphene oxide nanocomposite for carbendazim determination. Talanta, 2020, 220, 121334.	5.5	50
28	Mercury nanodroplets supported at biochar for electrochemical determination of zinc ions using a carbon paste electrode. Electrochimica Acta, 2015, 151, 525-530.	5.2	45
29	Carbon Paste Electrode Modified with Biochar for Sensitive Electrochemical Determination of Paraquat. Electroanalysis, 2016, 28, 764-769.	2.9	45
30	Green method for glucose determination using microfluidic device with a non-enzymatic sensor based on nickel oxyhydroxide supported at activated biochar. Talanta, 2019, 200, 518-525.	5.5	45
31	Sensitive voltammetric determination of lead released from ceramic dishes by using of bismuth nanostructures anchored on biochar. Talanta, 2015, 142, 221-227.	5.5	43
32	Disposable electrode obtained by pencil drawing on corrugated fiberboard substrate. Sensors and Actuators B: Chemical, 2018, 264, 20-26.	7.8	42
33	Evaluation of antimony microparticles supported on biochar for application in the voltammetric determination of paraquat. Materials Science and Engineering C, 2016, 62, 123-129.	7.3	41
34	Polyphenol oxidase-based electrochemical biosensors: A review. Analytica Chimica Acta, 2020, 1139, 198-221.	5.4	40
35	Copper hexacyanoferrate nanoparticles supported on biochar for amperometric determination of isoniazid. Electrochimica Acta, 2018, 285, 373-380.	5.2	37
36	Label-free aptasensor for p24-HIV protein detection based on graphene quantum dots as an electrochemical signal amplifier. Analytica Chimica Acta, 2021, 1166, 338548.	5.4	37

#	Article	IF	CITATIONS
37	Microfluidic thread based electroanalytical system for green chromatographic separations. Lab on A Chip, 2018, 18, 670-678.	6.0	36
38	Microfluidic paper-based device integrated with smartphone for point-of-use colorimetric monitoring of water quality index. Measurement: Journal of the International Measurement Confederation, 2020, 164, 108085.	5.0	36
39	State-of-the-art and perspectives in the use of biochar for electrochemical and electroanalytical applications. Green Chemistry, 2021, 23, 5272-5301.	9.0	36
40	3Dâ€printed Microfluidic Device Based on Cotton Threads for Amperometric Estimation of Antioxidants in Wine Samples. Electroanalysis, 2018, 30, 101-108.	2.9	33
41	A complete lab-made point of care device for non-immunological electrochemical determination of cortisol levels in salivary samples. Sensors and Actuators B: Chemical, 2021, 332, 129532.	7.8	33
42	Voltammetric Electronic Tongue Based on Carbon Paste Electrodes Modified with Biochar for Phenolic Compounds Stripping Detection. Electroanalysis, 2019, 31, 2238-2245.	2.9	30
43	Nanomodified Screen-Printed Electrode for direct determination of Aflatoxin B1 in malted barley samples. Sensors and Actuators B: Chemical, 2020, 307, 127547.	7.8	30
44	Flow injection amperometric determination of dipyrone in pharmaceutical formulations using a carbon paste electrode. Il Farmaco, 2003, 58, 999-1004.	0.9	28
45	Flow injection amperometric determination of procaine in pharmaceutical formulation using a screen-printed carbon electrode. Journal of Pharmaceutical and Biomedical Analysis, 2007, 43, 315-319.	2.8	28
46	Biochar obtained from spent coffee grounds: Evaluation of adsorption properties and its application in a voltammetric sensor for lead (II) ions. Microchemical Journal, 2021, 165, 106114.	4.5	28
47	Determination of lactate levels in biological fluids using a disposable ion-selective potentiometric sensor based on polypyrrole films. Sensors and Actuators B: Chemical, 2019, 296, 126663.	7.8	27
48	Graphene Quantum Dots Modified Screenâ€printed Electrodes as Electroanalytical Sensing Platform for Diethylstilbestrol. Electroanalysis, 2019, 31, 838-843.	2.9	27
49	Label-free electrochemical immunosensor for quick detection of anti-hantavirus antibody. Journal of Electroanalytical Chemistry, 2019, 842, 140-145.	3.8	26
50	Nickel hexacyanoferrate supported at nickel nanoparticles for voltammetric determination of rifampicin. Sensors and Actuators B: Chemical, 2018, 260, 816-823.	7.8	24
51	Electroanalytical application of a screen-printed electrode modified by dodecanethiol-stabilized platinum nanoparticles for dapsone determination. Electrochimica Acta, 2012, 66, 265-270.	5.2	23
52	Potentiometric determination of Diclofenac using an ion-selective electrode prepared from polypyrrole films. Journal of Electroanalytical Chemistry, 2014, 732, 11-16.	3.8	23
53	Thiol-capped gold nanoparticles: Influence of capping amount on electrochemical behavior and potential application as voltammetric sensor for diltiazem. Sensors and Actuators B: Chemical, 2015, 220, 673-678.	7.8	23
54	Design of a new nanocomposite between bismuth nanoparticles and graphene oxide for development of electrochemical sensors. Materials Science and Engineering C, 2017, 79, 262-269.	7.3	23

#	Article	IF	CITATIONS
55	Quick electrochemical immunoassay for hantavirus detection based on biochar platform. Talanta, 2019, 204, 163-171.	5.5	23
56	Simple and low-cost sensor based on activated biochar for the stripping voltammetric detection of caffeic acid. Microchemical Journal, 2020, 159, 105380.	4.5	23
57	Chemical Wet Oxidation of Carbon Nanotubes for Electrochemical Determination of Methyl Parathion. Journal of Analytical Chemistry, 2020, 75, 119-126.	0.9	23
58	Microfluidic devices based on textile threads for analytical applications: state of the art and prospects. Analytical Methods, 2021, 13, 4830-4857.	2.7	21
59	Preconcentration of Rutin at a Poly Glutamic Acid Modified Electrode and its Determination by Square Wave Voltammetry. Analytical Letters, 2007, 40, 3430-3442.	1.8	20
60	Selective carbonaceous-based (nano)composite sensors for electrochemical determination of paraquat in food samples. Food Chemistry, 2022, 373, 131521.	8.2	20
61	Lithium ions determination by selective pre-concentration and differential pulse anodic stripping voltammetry using a carbon paste electrode modified with a spinel-type manganese oxide. Talanta, 2004, 62, 603-609.	5.5	19
62	Construction and evaluation of carbon black and poly(ethylene co-vinyl)acetate (EVA) composite electrodes for development of electrochemical (bio)sensors. Sensors and Actuators B: Chemical, 2017, 253, 10-18.	7.8	19
63	A low cost, versatile and chromatographic device for microfluidic amperometric analyses. Sensors and Actuators B: Chemical, 2020, 304, 127117.	7.8	19
64	Nonenzymatic sensor for determination of glucose in blood plasma based on nickel oxyhydroxide in a microfluidic system of cotton thread. Journal of Electroanalytical Chemistry, 2019, 840, 153-159.	3.8	17
65	Screen-printed carbon electrode modified with poly-L-histidine applied to gold(III) determination. Journal of the Brazilian Chemical Society, 2009, 20, 100-106.	0.6	16
66	Improvement in the performance of an electrochemical sensor for ethanol determination by chemical treatment of graphite. Journal of Electroanalytical Chemistry, 2020, 877, 114659.	3.8	14
67	Simple and Inexpensive Microfluidic Thread Based Device for Teaching Microflow Injection Analysis and Electrochemistry. Journal of Chemical Education, 2018, 95, 1411-1414.	2.3	13
68	Disposable potentiometric citrate sensor based on polypyrroleâ€doped films for indirect determination of sildenafil in pharmaceuticals formulations. Journal of Applied Polymer Science, 2016, 133, .	2.6	12
69	Electrochemical evaluation of the a carbon-paste electrode modified with spinel manganese(IV) oxide under flow conditions for amperometric determination of lithium. Electrochimica Acta, 2011, 56, 2552-2558.	5.2	11
70	Disposable Solid‣tate Sensor Based on Polypyrrole Films Doped for Potentiometric Determination of Dipyrone in Human Urine and Pharmaceuticals Products. Electroanalysis, 2013, 25, 1535-1540.	2.9	10
71	Potentiometric determination of pantoprazole using an ion-selective sensor based on polypyrrole doped films. Materials Science and Engineering C, 2014, 43, 517-520.	7.3	10
72	A simple enzymeless approach for Paraoxon determination using imidazole-functionalized carbon nanotubes. Materials Science and Engineering C, 2020, 116, 111140.	7.3	10

#	Article	IF	CITATIONS
73	Anodic Stripping Voltammetric Determination of Lead (II) and Cadmium (II) by Using a Carbon Nanotubes Paste Electrode Modified with Ion Exchange Synthetic Resin. Current Analytical Chemistry, 2012, 8, 520-527.	1.2	8
74	A Simple and Rapid Estimation of Totals Polyphenols Based On Carbon Paste Electrode Modified with Ruthenium Oxo omplex. Electroanalysis, 2015, 27, 2371-2376.	2.9	8
75	A carbon fiber ultramicroelectrode as a simple tool to direct antioxidant estimation based on caffeic acid oxidation. Analytical Methods, 2020, 12, 3608-3616.	2.7	8
76	Chemically-Activated Biochar from Ricinus communis L. Cake and Their Potential Applications for the Voltammetric Assessment of Some Relevant Environmental Pollutants. Journal of the Brazilian Chemical Society, 0, , .	0.6	7
77	Simple Melatonin Determination Using Disposable and Low-Cost Lab-Made Screen-Printed Carbon Electrode. Journal of the Electrochemical Society, 2022, 169, 037503.	2.9	7
78	A carbon black composite electrode for flow injection amperometric determination of hydrochlorothiazide. Analytical Methods, 2019, 11, 2422-2427.	2.7	5
79	3D-Printed Electrochemical Devices for Sensing and Biosensing of Biomarkers. , 2022, , 121-136.		5
80	Electrochemical behavior of a cation-exchange resin modified with copper ions on non-enzymatic glucose determination. Journal of Electroanalytical Chemistry, 2019, 835, 248-253.	3.8	4
81	Mercury isles in titanate nanotubes: a new strategy for using mercury electrodes in analytical application. Monatshefte Für Chemie, 2020, 151, 1485-1491.	1.8	4
82	Use of beeswax as an alternative binder in the development of composite electrodes: an approach for determination of hydrogen peroxide in honey samples. Electrochimica Acta, 2021, 390, 138876.	5.2	3
83	Screen-Printed Carbon Electrode Modified with Poly-L-Histidine Applied to Voltammetric Determination of Chromium (VI). ECS Transactions, 2006, 3, 87-95.	0.5	2
84	Filmes de polipirrol aplicados no desenvolvimento de eletrodos descartÃ;veis seletivos a Ãons fluoreto. Polimeros, 2014, 24, 508-513.	0.7	2
85	A simple, fast, and cost-effective analytical method for monitoring active quinones in a H2O2 production process. Microchemical Journal, 2021, 163, 105861.	4.5	1
86	Evaluation of Carbon Nanotubes/Polyaniline Thin Films for Development of Electrochemical Sensors. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
87	Simple, fast and inexpensive method for determination of ranitidine hydrochloride based on conductometric measurements. Ecletica Quimica, 2018, 43, 37.	0.5	0
88	Simple, fast and inexpensive method for determination of ranitidine hydrochloride based on conductometric measurements. Ecletica Quimica, 2019, 43, 37.	0.5	0