Roman D Mysyk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/459783/publications.pdf Version: 2024-02-01

ROMAN D MYSYK

#	Article	IF	CITATIONS
1	lon transport from water-in-salt electrolyte through porosity of hierarchical porous carbons unraveled by solid-state NMR. Electrochimica Acta, 2022, 404, 139716.	5.2	4
2	Ball-milling-enhanced capacitive charge storage of activated graphene in aqueous, organic and ionic liquid electrolytes. Electrochimica Acta, 2021, 370, 137738.	5.2	16
3	Effect of cation (Li+, Na+, K+, Rb+, Cs+) in aqueous electrolyte on the electrochemical redox of Prussian blue analogue (PBA) cathodes. Journal of Energy Chemistry, 2020, 40, 31-38.	12.9	69
4	Understanding enhanced charge storage of phosphorus-functionalized graphene in aqueous acidic electrolytes. Electrochimica Acta, 2020, 361, 136985.	5.2	22
5	Robust NiCo ₂ O ₄ /Superactivated Carbon Aqueous Supercapacitor with High Power Density and Stable Cyclability. ChemElectroChem, 2019, 6, 2536-2545.	3.4	11
6	Relation between texture and high-rate capacitance of oppositely charged microporous carbons from biomass waste in acetonitrile-based supercapacitors. Electrochimica Acta, 2019, 293, 496-503.	5.2	13
7	Highly packed graphene–CNT films as electrodes for aqueous supercapacitors with high volumetric performance. Journal of Materials Chemistry A, 2018, 6, 3667-3673.	10.3	43
8	Electrowetting of Ionic Liquid on Graphite: Probing via in Situ Electrochemical X-ray Photoelectron Spectroscopy. Langmuir, 2018, 34, 14528-14536.	3.5	6
9	Reduced graphene oxide decorated with SnO2 nanoparticles as negative electrode for lithium ion capacitors. Electrochimica Acta, 2018, 284, 542-550.	5.2	73
10	One-pot synthesis of highly activated carbons from melamine and terephthalaldehyde as electrodes for high energy aqueous supercapacitors. Journal of Materials Chemistry A, 2017, 5, 14619-14629.	10.3	58
11	Lithium and sodium ion capacitors with high energy and power densities based on carbons from recycled olive pits. Journal of Power Sources, 2017, 359, 17-26.	7.8	133
12	Outstanding room-temperature capacitance of biomass-derived microporous carbons in ionic liquid electrolyte. Electrochemistry Communications, 2017, 79, 5-8.	4.7	20
13	Graphene-based lithium ion capacitor with high gravimetric energy and power densities. Journal of Power Sources, 2017, 363, 422-427.	7.8	49
14	The decisive role of electrolyte concentration in the performance of aqueous chloride-based carbon/carbon supercapacitors with extended voltage window. Electrochimica Acta, 2016, 221, 177-183.	5.2	24
15	Thin films of pure vanadium nitride: Evidence for anomalous non-faradaic capacitance. Journal of Power Sources, 2016, 324, 439-446.	7.8	67
16	Review on supercapacitors: Technologies and materials. Renewable and Sustainable Energy Reviews, 2016, 58, 1189-1206.	16.4	2,197
17	Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochimica Acta, 2015, 160, 178-184.	5.2	144
18	Porous Graphene Oxide/Diboronic Acid Materials: Structure and Hydrogen Sorption. Journal of Physical Chemistry C, 2015, 119, 27179-27191.	3.1	49

ROMAN D ΜΥSYK

#	Article	IF	CITATIONS
19	Effect of Mesopore Ordering in Otherwise Similar Micro/Mesoporous Carbons on the High-Rate Performance of Electric Double-Layer Capacitors. Journal of Physical Chemistry C, 2014, 118, 27715-27720.	3.1	28
20	Nanoporous carbons from natural lignin: study of structural–textural properties and application to organic-based supercapacitors. RSC Advances, 2014, 4, 48336-48343.	3.6	50
21	Microporous carbons finely-tuned by cyclic high-pressure low-temperature oxidation and their use in electrochemical capacitors. Carbon, 2012, 50, 3367-3374.	10.3	32
22	Nanoporosity development in the thermal-shock KOH activation of brown coal. Carbon, 2010, 48, 4556-4558.	10.3	61
23	Pseudo-capacitance of nanoporous carbons in pyrrolidinium-based protic ionic liquids. Electrochemistry Communications, 2010, 12, 414-417.	4.7	68
24	Saturation of subnanometer pores in an electric double-layer capacitor. Electrochemistry Communications, 2009, 11, 554-556.	4.7	107
25	Confinement of Symmetric Tetraalkylammonium Ions in Nanoporous Carbon Electrodes of Electric Double-Layer Capacitors. Journal of Physical Chemistry C, 2009, 113, 13443-13449.	3.1	49
26	Investigation of factors affecting crystallization of cyclopentane clathrate hydrate. Journal of Chemical Physics, 2008, 129, 174502.	3.0	16
27	New graphite nitrate derived intercalation compounds of higher thermal stability. Journal of Physics and Chemistry of Solids, 2006, 67, 1127-1131.	4.0	11
28	Theoretical study of stability of graphite intercalation compounds with BrÃ,nsted acids. Carbon, 2003, 41, 2757-2760.	10.3	17