
Nishith Verma

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4597557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coiled flow inverter mediated synthesis of activated carbon fiber-supported Ni nanoparticles. Reaction Chemistry and Engineering, 2022, 7, 719-729.	1.9	5
2	A Cu–CNF–rGO-functionalized carbon film indicated as a versatileÂelectrode for sensing of biomarkers using electropolymerized recognition elements. Journal of Materials Science, 2022, 57, 6345-6360.	1.7	3
3	Iron-Carbon Nanofibers Coated with Acylated Homoserine Lactone Enhance Plant Growth and Suppress Fusarium Wilt Disease in <i>Cicer arietinum</i> by Modulating Soil Microbiome. ACS Agricultural Science and Technology, 2022, 2, 311-322.	1.0	7
4	Photocatalytic oxidation of glyphosate and reduction of Cr(VI) in water over ACF-supported CoNiWO4-gCN composite under batch and flow conditions. Chemosphere, 2022, 297, 134119.	4.2	19
5	A dual photoelectrode-based double-chambered microbial fuel cell applied for simultaneous COD and Cr (VI) reduction in wastewater. International Journal of Hydrogen Energy, 2021, 46, 3160-3170.	3.8	21
6	Electrochemical hydrogen storage behavior of Ni-Ceria impregnated carbon micro-nanofibers. International Journal of Hydrogen Energy, 2021, 46, 2491-2502.	3.8	11
7	Voltammetric Detection of Aqueous Glyphosate on a Copper and Poly(Pyrrole)â€electromodified Activated Carbon Fiber. Electroanalysis, 2021, 33, 916-924.	1.5	8
8	A nickel oxide-decorated <i>in situ</i> grown 3-D graphitic forest engrained carbon foam electrode for microbial fuel cells. Chemical Communications, 2021, 57, 879-882.	2.2	39
9	A CeO ₂ sprinkled graphitic novel packed bed anode-based single-chamber MFC for the treatment of high organic-loaded industrial effluent in upflow continuous mode. Journal of Materials Chemistry A, 2021, 9, 23106-23116.	5.2	19
10	Rhizobacteria and Acylated Homoserine Lactone-Based Nanobiofertilizer to Improve Growth and Pathogen Defense in <i>Cicer arietinum</i> and <i>Triticum aestivum</i> Plants. ACS Agricultural Science and Technology, 2021, 1, 240-252.	1.0	24
11	Direct Z-scheme-based novel cobalt nickel tungstate/graphitic carbon nitride composite: Enhanced photocatalytic degradation of organic pollutants and oxidation of benzyl alcohol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127606.	2.3	35
12	Improved oxygen reduction and simultaneous glyphosate degradation over iron phthalocyanine and reduced graphene oxide‒dispersed activated carbon fiber electrodes in a microbial fuel cell. Journal of Power Sources, 2021, 514, 230592.	4.0	13
13	Cu-Fe bimetal-carbon nanofiberous catalytic beads for enhanced oxidation of dichlorvos pesticide and simultaneous reduction of Cr(VI) in wet air. Catalysis Today, 2020, 348, 194-202.	2.2	21
14	Simultaneous scavenging of Cr(VI) from soil and facilitation of nutrient uptake in plant using a mixture of carbon microfibers and nanofibers. Chemosphere, 2020, 239, 124760.	4.2	18
15	Sequential desulfurization of thiol compounds containing liquid fuels: Adsorption over Ni-doped carbon beads followed by biodegradation using environmentally isolated Bacillus zhangzhouensis. Fuel, 2020, 277, 118208.	3.4	15
16	Spermine biomarker of cancerous cells voltammetrically detected on a poly(β-cyclodextrin) - electropolymerized carbon film dispersed with Cu - CNFs. Sensors and Actuators B: Chemical, 2020, 313, 128055.	4.0	21
17	Mathematical Modelling of a Nonâ€enzymatic Amperometric Electrochemical Biosensor for Cholesterol. Electroanalysis, 2020, 32, 1251-1262.	1.5	3
18	Efficient electro-oxidation of diclofenac persistent organic pollutant in wastewater using carbon film-supported Cu-rGO electrode. Chemosphere, 2020, 248, 126030.	4.2	24

#	Article	IF	CITATIONS
19	Simultaneous hydrogen generation and COD reduction in a photoanode-based microbial electrolysis cell. International Journal of Hydrogen Energy, 2020, 45, 25985-25995.	3.8	45
20	Feâ€enriched Clayâ€coated and Reduced Graphene Oxideâ€modified Nâ€doped Polymer Nanocomposite: A Natural Recognition Elementâ€based Sensing Electrode for DNT. Electroanalysis, 2019, 31, 535-544.	1.5	6
21	In-situ synthesis of TiO2 nanoparticles in ACF: Photocatalytic degradation under continuous flow. Solar Energy, 2019, 189, 35-44.	2.9	59
22	Methyl nicotinate biomarker of tuberculosis voltammetrically detected on cobalt nanoparticle-dispersed reduced graphene oxide-based carbon film in blood. Sensors and Actuators B: Chemical, 2019, 297, 126754.	4.0	12
23	Efficient hydrogen production using Ni-graphene oxide-dispersed laser-engraved 3D carbon micropillars as electrodes for microbial electrolytic cell. Renewable Energy, 2019, 138, 628-638.	4.3	23
24	First synthesis of poly(furfuryl) alcohol precursor-based porous carbon beads as an efficient adsorbent for volatile organic compounds. Chemical Engineering Journal, 2019, 373, 365-374.	6.6	28
25	Bacterial homoserine lactones as a nanocomposite fertilizer and defense regulator for chickpeas. Environmental Science: Nano, 2019, 6, 1246-1258.	2.2	21
26	Efficient oxygen reduction in a microbial fuel cell based on carbide-derived carbon electrode synthesized using thiourea as the single source of electroconductive heteroatoms and graphitic carbon. International Journal of Hydrogen Energy, 2019, 44, 10982-10995.	3.8	9
27	Electro-polymerized polyacrylamide nano film grown on a Ni-reduced graphene oxide- polymer composite: A highly selective non-enzymatic electrochemical recognition element for glucose. Sensors and Actuators B: Chemical, 2019, 289, 216-225.	4.0	31
28	Cobalt - Iron phthalocyanine supported on carbide - Derived carbon as an excellent oxygen reduction reaction catalyst for microbial fuel cells. Electrochimica Acta, 2019, 298, 70-79.	2.6	44
29	Candle soot-derived carbon nanoparticles: An inexpensive and efficient electrode for microbial fuel cells. Electrochimica Acta, 2018, 264, 119-127.	2.6	91
30	Electrochemically deposited dendritic poly (methyl orange) nanofilm on metal-carbon-polymer nanocomposite: A novel non-enzymatic electrochemical biosensor for cholesterol. Journal of Electroanalytical Chemistry, 2018, 814, 134-143.	1.9	54
31	Synthesis of novel PVA–starch formulation-supported Cu–Zn nanoparticle carrying carbon nanofibers as a nanofertilizer: controlled release of micronutrients. Journal of Materials Science, 2018, 53, 7150-7164.	1.7	108
32	Fixed bed adsorptive desulfurization of thiophene over Cu/Ni-dispersed carbon nanofiber. Fuel, 2018, 216, 381-389.	3.4	41
33	Hydrodesulfurization of Thiophene on Activated Carbon Fiber Supported NiMo Catalysts. Energy & Fuels, 2018, 32, 2183-2196.	2.5	28
34	Electrochemically grown polymethylene blue nanofilm on copper-carbon nanofiber nanocomposite: An electrochemical sensor for creatinine. Sensors and Actuators B: Chemical, 2018, 277, 562-570.	4.0	59
35	Novel polymeric composite grafted with metal nanoparticle-dispersed CNFs as a chemiresistive non-destructive fruit sensor material. Materials Chemistry and Physics, 2018, 217, 216-227.	2.0	28
36	Synthesis of Yeast-Immobilized and Copper Nanoparticle-Dispersed Carbon Nanofiber-Based Diabetic Wound Dressing Material: Simultaneous Control of Glucose and Bacterial Infections. ACS Applied Bio Materials, 2018, 1, 246-258.	2.3	52

#	Article	IF	CITATIONS
37	Carbon bead-supported copper-dispersed carbon nanofibers: An efficient catalyst for wet air oxidation of industrial wastewater in a recycle flow reactor. Journal of Industrial and Engineering Chemistry, 2018, 67, 448-460.	2.9	13
38	Wet air oxidation of aqueous dichlorvos pesticide over catalytic copper-carbon nanofiberous beads. Chemical Engineering Journal, 2018, 351, 428-440.	6.6	27
39	A novel alumina nanoparticleâ€carbon microâ€nanofiberâ€polypropylene nanocomposite with improved electrical, thermal, and mechanical properties. Polymer Composites, 2017, 38, E359.	2.3	6
40	Synthesis of Silicon Carbide-Derived Carbon as an Electrode of a Microbial Fuel Cell and an Adsorbent of Aqueous Cr(VI). Industrial & Engineering Chemistry Research, 2017, 56, 1233-1244.	1.8	30
41	Carbon gel-supported Fe-graphene disks: Synthesis, adsorption of aqueous Cr(VI) and Pb(II) and the removal mechanism. Chemical Engineering Journal, 2017, 326, 987-999.	6.6	42
42	Highly effective Cu/Zn-carbon micro/nanofiber-polymer nanocomposite-based wound dressing biomaterial against the P. aeruginosa multi- and extensively drug-resistant strains. Materials Science and Engineering C, 2017, 77, 630-641.	3.8	77
43	Nickel nanoparticle-doped and steam-modified multiscale structure of carbon micro-nanofibers for hydrogen storage: Effects of metal, surface texture and operating conditions. International Journal of Hydrogen Energy, 2017, 42, 6104-6117.	3.8	30
44	Carbon nanofibers as a micronutrient carrier in plants: efficient translocation and controlled release of Cu nanoparticles. Environmental Science: Nano, 2017, 4, 138-148.	2.2	88
45	Enhanced hydrogen storage in graphitic carbon micro-nanofibers at moderate temperature and pressure: Synergistic interaction of asymmetrically-dispersed nickel-ceria nanoparticles. International Journal of Hydrogen Energy, 2017, 42, 27139-27153.	3.8	10
46	Adsorptive desulfurization of diesel oil using nickel nanoparticle-doped activated carbon beads with/without carbon nanofibers: Effects of adsorbate size and adsorbent texture. Fuel, 2017, 189, 186-194.	3.4	71
47	Improved performance of a single chamber microbial fuel cell using nitrogen-doped polymer-metal-carbon nanocomposite-based air-cathode. International Journal of Hydrogen Energy, 2017, 42, 3271-3280.	3.8	53
48	Surface ion imprinting-mediated carbon nanofiber-grafted highly porous polymeric beads: Synthesis and application towards selective removal of aqueous Pb(II). Chemical Engineering Journal, 2017, 313, 1142-1151.	6.6	78
49	Carbon Beadâ€Supported Ethylene Diamineâ€Functionalized Carbon Nanofibers: An Efficient Adsorbent for Salicylic Acid. Clean - Soil, Air, Water, 2016, 44, 1461-1470.	0.7	35
50	Aqueous phase adsorption of different sized molecules on activated carbon fibers: Effect of textural properties. Chemosphere, 2016, 155, 62-69.	4.2	46
51	Carbon Nanofiber-skinned Three Dimensional Ni/Carbon Micropillars: High Performance Electrodes of a Microbial Fuel Cell. Electrochimica Acta, 2016, 219, 88-98.	2.6	38
52	Numerical Investigation of Flow Patterns and Concentration Profiles in Yâ€Mixers. Chemical Engineering and Technology, 2016, 39, 1963-1971.	0.9	11
53	In situ nitrogen-doping of nickel nanoparticle-dispersed carbon nanofiber-based electrodes: Its positive effects on the performance of a microbial fuel cell. Electrochimica Acta, 2016, 190, 620-627.	2.6	91
54	Enhanced power generation using a novel polymer-coatedÂnanoparticles dispersed-carbon micro-nanofibers-based air-cathode in a membrane-less single chamber microbial fuel cell. International Journal of Hydrogen Energy, 2016, 41, 1237-1247.	3.8	74

#	Article	IF	CITATIONS
55	Removal of phenol from water by catalytic wet air oxidation using carbon bead – supported iron nanoparticle – containing carbon nanofibers in an especially configured reactor. Journal of Environmental Chemical Engineering, 2016, 4, 1504-1513.	3.3	26
56	Carbon bead-supported hollow carbon nanofibers synthesized via templating method for the removal of hexavalent chromium. Journal of Industrial and Engineering Chemistry, 2016, 36, 346-354.	2.9	32
5 7	Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material. Materials Science and Engineering C, 2016, 59, 938-947.	3.8	125
58	Novel Cu-carbon nanofiber composites for the counter electrodes of dye-sensitized solar cells. International Journal of Energy Research, 2015, 39, 668-680.	2.2	21
59	Synthesis of iron-doped resorcinol formaldehyde-based aerogels for the removal of Cr(VI) from water. Green Processing and Synthesis, 2015, 4, .	1.3	8
60	Removal of CO by Water–Gas Shift Reaction over Bimetal CeO2 and Ni Nanoparticles Dispersed in Carbon Micro-nanofibers. Catalysis Letters, 2015, 145, 1262-1271.	1.4	8
61	Facile One-Step Synthesis of Nitrogen-Doped Carbon Nanofibers for the Removal of Potentially Toxic Metals from Water. Industrial & Engineering Chemistry Research, 2015, 54, 5172-5178.	1.8	44
62	Graphitic carbon micronanofibers asymmetrically dispersed with alumina-nickel nanoparticles: A novel electrode for mediatorless microbial fuel cells. International Journal of Hydrogen Energy, 2015, 40, 5928-5938.	3.8	63
63	Carbon bead-supported nitrogen-enriched and Cu-doped carbon nanofibers for the abatement of NO emissions by reduction. Journal of Colloid and Interface Science, 2015, 457, 62-71.	5.0	19
64	Fabrication of Ni nanoparticles-dispersed carbon micro-nanofibers as the electrodes of a microbial fuel cell for bio-energy production. International Journal of Hydrogen Energy, 2015, 40, 1145-1153.	3.8	95
65	A zinc nanoparticles-dispersed multi-scale web of carbon micro-nanofibers for hydrogen production step of ZnO/Zn water splitting thermochemical cycle. Chemical Engineering Research and Design, 2014, 92, 1079-1090.	2.7	13
66	Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper–silver bimetal nanoparticles for antibacterial applications. Journal of Colloid and Interface Science, 2014, 418, 216-224.	5.0	34
67	An efficient antibacterial multi-scale web of carbon fibers with asymmetrically dispersed Ag–Cu bimetal nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 443, 311-319.	2.3	33
68	Removal of hexavalent chromium from water using Fe-grown carbon nanofibers containing porous carbon microbeads. Journal of Water Process Engineering, 2014, 3, 34-45.	2.6	60
69	Preparation of asymmetrically distributed bimetal ceria (CeO2) and copper (Cu) nanoparticles in nitrogen-doped activated carbon micro/nanofibers for the removal of nitric oxide (NO) by reduction. Journal of Colloid and Interface Science, 2014, 436, 218-226.	5.0	30
70	Depinning of Drops on Inclined Smooth and Topographic Surfaces: Experimental and Lattice Boltzmann Model Study. Langmuir, 2014, 30, 11086-11095.	1.6	12
71	Catalytic Oxidation of NO over CNF/ACF-Supported CeO2 and Cu Nanoparticles at Room Temperature. Industrial & Engineering Chemistry Research, 2014, 53, 12537-12547.	1.8	17
72	Membrane contactor for reactive extraction of succinic acid from aqueous solution by tertiary amine. Chemical Engineering Research and Design, 2014, 92, 2705-2714.	2.7	7

#	Article	IF	CITATIONS
73	Multi-scale carbon micro/nanofibers-based adsorbents for protein immobilization. Materials Science and Engineering C, 2014, 38, 46-54.	3.8	31
74	Synthesis of PVA-CAP-based biomaterial in situ dispersed with Cu nanoparticles and carbon micro-nanofibers for antibiotic drug delivery applications. Biochemical Engineering Journal, 2014, 90, 79-89.	1.8	71
75	Removal of dissolved H2S from wastewater using hollow fiber membrane contactor: Experimental and mathematical analysis. Desalination, 2013, 314, 34-42.	4.0	16
76	Cytotoxic Evaluation of the Hierarchical Web of Carbon Micronanofibers. Industrial & Engineering Chemistry Research, 2013, 52, 4672-4682.	1.8	54
77	Preparation of novel carbon microfiber/carbon nanofiber-dispersed polyvinyl alcohol-based nanocomposite material for lithium-ion electrolyte battery separator. Materials Science and Engineering C, 2013, 33, 1702-1709.	3.8	19
78	Development of bimetal-grown multi-scale carbon micro-nanofibers as an immobilizing matrix for enzymes in biosensor applications. Materials Science and Engineering C, 2013, 33, 4313-4322.	3.8	14
79	Preparation of surfactant-mediated silver and copper nanoparticles dispersed in hierarchical carbon micro-nanofibers for antibacterial applications. New Biotechnology, 2013, 30, 656-665.	2.4	73
80	Carbon nanofibers containing metal-doped porous carbon beads for environmental remediation applications. Chemical Engineering Journal, 2013, 229, 72-81.	6.6	39
81	CuCl2 Nanoparticles Dispersed in Activated Carbon Fibers for the Oxygen Production Step of the Cu–Cl Thermochemical Water Splitting Cycle. Industrial & Engineering Chemistry Research, 2012, 51, 15633-15641.	1.8	10
82	A CFD study on a vertical chemical vapor deposition reactor for growing carbon nanofibers. Chemical Engineering Research and Design, 2012, 90, 2293-2301.	2.7	21
83	Surfactant-Enhanced Multiscale Carbon Webs Including Nanofibers and Ni-Nanoparticles for the Removal of Gaseous Persistent Organic Pollutants. Industrial & Engineering Chemistry Research, 2012, 51, 2104-2112.	1.8	20
84	Fe-nanoparticles dispersed carbon micro and nanofibers: Surfactant-mediated preparation and application to the removal of gaseous VOCs. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 399, 46-55.	2.3	57
85	Preparation, Surface Functionalization, and Characterization of Carbon Micro Fibers for Adsorption Applications. Environmental Engineering Science, 2011, 28, 725-733.	0.8	8
86	Modification of Activated Carbon Fiber by Metal Dispersion and Surface Functionalization for the Removal of 2-Chloroethanol. Industrial & Engineering Chemistry Research, 2011, 50, 13092-13104.	1.8	26
87	Development of bi-metal doped micro- and nano multi-functional polymeric adsorbents for the removal of fluoride and arsenic(V) from wastewater. Desalination, 2011, 282, 27-38.	4.0	113
88	Preparation of carbon molecular sieves from carbon micro and nanofibers for sequestration of CO2. Chemical Engineering Research and Design, 2011, 89, 1737-1746.	2.7	22
89	Application of hollow fiber membrane contactor for the removal of carbon dioxide from water under liquid–liquid extraction mode. Journal of Membrane Science, 2011, 375, 323-333.	4.1	26
90	Adsorbents based on carbon microfibers and carbon nanofibers for the removal of phenol and lead from water. Journal of Colloid and Interface Science, 2011, 359, 228-239.	5.0	76

#	Article	IF	CITATIONS
91	Development of surface functionalized activated carbon fiber for control of NO and particulate matter. Journal of Hazardous Materials, 2010, 173, 211-222.	6.5	52
92	Lattice Boltzmann study of velocity, temperature, and concentration in micro-reactors. International Journal of Heat and Mass Transfer, 2010, 53, 3175-3185.	2.5	14
93	Hydrodynamic study on radially cross-flow fluidized bed multi-staged ion-exchange column. Chemical Engineering and Processing: Process Intensification, 2010, 49, 1199-1204.	1.8	4
94	Iron doped phenolic resin based activated carbon micro and nanoparticles by milling: Synthesis, characterization and application in arsenic removal. Chemical Engineering Science, 2010, 65, 3591-3601.	1.9	70
95	Fe-Grown Carbon Nanofibers for Removal of Arsenic(V) in Wastewater. Industrial & Engineering Chemistry Research, 2010, 49, 7074-7084.	1.8	77
96	Novel multi-staged radially cross-flow fluidized bed ion-exchange column. Chemical Engineering and Processing: Process Intensification, 2009, 48, 396-407.	1.8	4
97	Lattice Boltzmann methods for simulation of micro and macrotransport in a packed bed of porous adsorbents under non-isothermal condition. Computers and Mathematics With Applications, 2009, 58, 1003-1014.	1.4	12
98	Adsorptive Removal of Fluoride by Micro-nanohierarchal Web of Activated Carbon Fibers. Industrial & Engineering Chemistry Research, 2009, 48, 9697-9707.	1.8	64
99	Simulation of temperature fields in a narrow tubular adsorber by thermal lattice Boltzmann methods. Chemical Engineering Science, 2008, 63, 4269-4279.	1.9	17
100	Multi-stage fluidized bed column: Hydrodynamic study. Chemical Engineering and Processing: Process Intensification, 2008, 47, 957-970.	1.8	21
101	Microâ^'Nano Hierarchal Web of Activated Carbon Fibers for Catalytic Gas Adsorption and Reaction. Industrial & Engineering Chemistry Research, 2008, 47, 3700-3707.	1.8	43
102	Simulation of micro- and macro-transport in a packed bed of porous adsorbents by lattice Boltzmann methods. Chemical Engineering Science, 2007, 62, 3685-3698.	1.9	25
103	Removal of SO2 by activated carbon fibers in the presence of O2 and H2O. Carbon, 2006, 44, 46-60.	5.4	125
104	Preparation and characterization of ACF for the adsorption of BTX and SO2. Chemical Engineering and Processing: Process Intensification, 2006, 45, 1-13.	1.8	55
105	Mass transfer study on counter current multi-stage fluidized bed ion exchanger. Chemical Engineering and Processing: Process Intensification, 2006, 45, 31-45.	1.8	11
106	Lattice Boltzmann modelling of unsteady-state 2D concentration profiles in adsorption bed. Chemical Engineering Science, 2006, 61, 2510-2521.	1.9	25
107	Simulation of 3D velocity and concentration profiles in a packed bed adsorber by lattice Boltzmann methods. Chemical Engineering Science, 2006, 61, 7754-7765.	1.9	28
108	Momentum and heat transfer from an asymmetrically confined circular cylinder in a plane channel. Heat and Mass Transfer, 2006, 42, 1037-1048.	1.2	76

#	ARTICLE	IF	CITATIONS
109	Catalytic oxidation of toluene and m-xylene by activated carbon fiber impregnated with transition metals. Carbon, 2005, 43, 3041-3053.	5.4	75
110	A lattice Boltzmann model for adsorption breakthrough. Heat and Mass Transfer, 2005, 41, 843-854.	1.2	24
111	Comparative study of removal of volatile organic compounds by cryogenic condensation and adsorption by activated carbon fiber. Separation and Purification Technology, 2004, 39, 23-37.	3.9	156
112	Breakthrough analysis for adsorption of sulfur-dioxide over zeolites. Chemical Engineering and Processing: Process Intensification, 2004, 43, 9-22.	1.8	72
113	Wall effects in flow past a circular cylinder in a plane channel: a numerical study. Chemical Engineering and Processing: Process Intensification, 2004, 43, 1529-1537.	1.8	124
114	Removal of volatile organic compound by activated carbon fiber. Carbon, 2004, 42, 2949-2962.	5.4	325
115	Removal of aniline from aqueous solution in a mixed flow reactor using emulsion liquid membrane. Journal of Membrane Science, 2003, 226, 185-201.	4.1	56
116	Transient Analysis of Two-Phase Flow during Blowdown of a Pipeline Carrying Flashing Liquids Journal of Chemical Engineering of Japan, 2002, 35, 982-995.	0.3	1
117	Transient analysis of a gas manifold system. Canadian Journal of Chemical Engineering, 2002, 80, 536-543.	0.9	0
118	Removal of volatile organic compounds by cryogenic condensation followed by adsorption. Chemical Engineering Science, 2002, 57, 2679-2696.	1.9	162
119	Transient analysis of gas flow in a straight pipe. Canadian Journal of Chemical Engineering, 2001, 79, 18-27.	0.9	4
120	ANALYSIS OF RETENTION AND FLUX DECLINE DURING ULTRAFILTRATION OF LIMED SUGARCANE (CLARIFIED) JUICE. Chemical Engineering Communications, 2001, 188, 179-206.	1.5	4
121	Moisture Drydown in Ultra-High-Purity Oxygen Systems. Journal of the IEST, 1998, 41, 13-15.	0.2	6
122	Sources and transport mechanisms of gaseous impurities in vertical thermal reactors. IEEE Transactions on Semiconductor Manufacturing, 1996, 9, 312-319.	1.4	1
123	Contamination of Ultrapure Systems by Backâ€Diffusion of Gaseous Impurities. Journal of the Electrochemical Society, 1993, 140, 1459-1463.	1.3	13