Fernando FernÃ;ndez-LÃ;zaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4597032/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Induction of Strong and Tunable Circularly Polarized Luminescence of Nonchiral, Nonmetal, Lowâ€Molecularâ€Weight Fluorophores Using Chiral Nanotemplates. Angewandte Chemie - International Edition, 2017, 56, 2989-2993.	13.8	205
2	Gemini surfactants, the effect of hydrophobic chain length and dissymmetry. Chemical Communications, 1997, , 2105-2106.	4.1	181
3	Perylenediimides as non-fullerene acceptors in bulk-heterojunction solar cells (BHJSCs). Journal of Materials Chemistry A, 2016, 4, 9336-9346.	10.3	172
4	Double helical silica fibrils by sol–gel transcription of chiral aggregates of gemini surfactantsElectronic supplementary information (ESI) available: Fig. S1: TEM image of double stranded silica obtained by sol–gel transcription of l-1/d-1 gel (2â^¶1 mol/mol, 33% ee l-1 excess). See http://www.rsc.org/suppdata/cc/b2/b202799m/. Chemical Communications, 2002, , 1212-1213.	4.1	130
5	Individualized Silica Nanohelices and Nanotubes: Tuning Inorganic Nanostructures Using Lipidic Self-Assemblies. Nano Letters, 2008, 8, 1929-1935.	9.1	113
6	Advances in phthalocyanine-sensitized solar cells (PcSSCs). Journal of Materials Chemistry A, 2014, 2, 15672-15682.	10.3	113
7	Molecular Structure of Self-Assembled Chiral Nanoribbons and Nanotubules Revealed in the Hydrated State. Journal of the American Chemical Society, 2008, 130, 14705-14712.	13.7	108
8	GoldHelix: Gold Nanoparticles Forming 3D Helical Superstructures with Controlled Morphology and Strong Chiroptical Property. ACS Nano, 2017, 11, 3806-3818.	14.6	108
9	Efficient deep-red light-emitting electrochemical cells based on a perylenediimide-iridium-complex dyad. Chemical Communications, 2009, , 3886.	4.1	103
10	Formation of a long-lived charge-separated state of a zinc phthalocyanine-perylenediimide dyad by complexation with magnesium ion. Chemical Communications, 2005, , 3814.	4.1	93
11	Control of Photoinduced Electron Transfer in Zinc Phthalocyanineâ^'Perylenediimide Dyad and Triad by the Magnesium Ion. Journal of Physical Chemistry A, 2008, 112, 10744-10752.	2.5	86
12	Synthesis and Photophysical Studies of a New Nonaggregated C60â^'Silicon Phthalocyanineâ^'C60Triad. Organic Letters, 2007, 9, 3441-3444.	4.6	69
13	Optically Active Perovskite CsPbBr ₃ Nanocrystals Helically Arranged on Inorganic Silica Nanohelices. Nano Letters, 2020, 20, 8453-8460.	9.1	68
14	Synthesis and Photoinduced Electron Transfer of Phthalocyanineâ `Perylenebisimide Pentameric Arrays. Journal of Organic Chemistry, 2009, 74, 5871-5880.	3.2	60
15	A water-soluble perylene dye functionalised with a 17β-estradiol: a new fluorescent tool for steroid hormones. Chemical Communications, 2011, 47, 8307.	4.1	58
16	1,7â€Bayâ€Substituted Perylenediimide Derivative with Outstanding Laser Performance. Advanced Optical Materials, 2013, 1, 933-938.	7.3	58
17	Rational design of a phthalocyanine–perylenediimide dyad with a long-lived charge-separated state. Chemical Communications, 2012, 48, 6241.	4.1	56
18	Submillisecond-lived photoinduced charge separation in a fully conjugated phthalocyanine–perylenebenzimidazole dyad. Chemical Science, 2014, 5, 4785-4793.	7.4	54

#	Article	IF	CITATIONS
19	Fluorescence emission originated from the H-aggregated cyanine dye with chiral gemini surfactant assemblies having a narrow absorption band and a remarkably large Stokes shift. Chemical Communications, 2017, 53, 8870-8873.	4.1	53
20	Induction of Strong and Tunable Circularly Polarized Luminescence of Nonchiral, Nonmetal, Lowâ€Molecularâ€Weight Fluorophores Using Chiral Nanotemplates. Angewandte Chemie, 2017, 129, 3035-3039.	2.0	52
21	Excited‣tate Charge Transfer in Covalently Functionalized MoS ₂ with a Zinc Phthalocyanine Donor–Acceptor Hybrid. Angewandte Chemie - International Edition, 2019, 58, 5712-5717.	13.8	52
22	Direct Observation of Siloxane Chirality on Twisted and Helical Nanometric Amorphous Silica. Nano Letters, 2016, 16, 6411-6415.	9.1	49
23	Chiral Colloids: Homogeneous Suspension of Individualized SiO ₂ Helical and Twisted Nanoribbons. ACS Nano, 2014, 8, 6863-6872.	14.6	47
24	Interfacial photo-induced charge transfer reactions in perylene imide dye sensitised solar cells. Journal of Materials Chemistry, 2008, 18, 5802.	6.7	42
25	Light harvesting zinc naphthalocyanine–perylenediimide supramolecular dyads: long-lived charge-separated states in nonpolar media. Physical Chemistry Chemical Physics, 2012, 14, 3612.	2.8	38
26	Adiabatic Photoinduced Electron Transfer and Back Electron Transfer in a Series of Axially Substituted Silicon Phthalocyanine Triads. Journal of Physical Chemistry C, 2008, 112, 17694-17701.	3.1	35
27	Supramolecular interactions in dye-sensitised solar cells. Journal of Materials Chemistry, 2009, 19, 5818.	6.7	32
28	A structure–property–performance investigation of perylenediimides as electron accepting materials in organic solar cells. Physical Chemistry Chemical Physics, 2013, 15, 18894.	2.8	32
29	Synthesis and Photophysics of Silicon Phthalocyanine–Perylenebisimide Triads Connected through Rigid and Flexible Bridges. Chemistry - A European Journal, 2011, 17, 9153-9163.	3.3	31
30	Does a nitrogen matter? Synthesis and photoinduced electron transfer of perylenediimide donors covalently linked to C ₅₉ N and C ₆₀ acceptors. Nanoscale, 2015, 7, 7437-7444.	5.6	30
31	Synergistic Interaction of Dyes and Semiconductor Quantum Dots for Advanced Cascade Cosensitized Solar Cells. Advanced Functional Materials, 2015, 25, 3220-3226.	14.9	28
32	Solventâ€Free Off–On Detection of the Improvised Explosive Triacetone Triperoxide (TATP) with Fluorogenic Materials. Chemistry - A European Journal, 2017, 23, 13973-13979.	3.3	28
33	Supramolecular Zinc Phthalocyanine–Imidazolyl Perylenediimide Dyad and Triad: Synthesis, Complexation, and Photophysical Studies. Chemistry - an Asian Journal, 2011, 6, 3110-3121.	3.3	27
34	Multichromophoric Perylenediimide–Silicon Phthalocyanine–C ₆₀ System as an Artificial Photosynthetic Analogue. Chemistry - A European Journal, 2017, 23, 3863-3874.	3.3	26
35	Multistep electron transfer systems based on silicon phthalocyanine, [60]fullerene and trinitrofluorenone. Chemical Communications, 2010, 46, 3944.	4.1	24
36	Facile and Versatile Approach for Generating Circularly Polarized Luminescence by Non-chiral, Low-molecular Dye-on-nanotemplate Composite System. Chemistry Letters, 2016, 45, 448-450.	1.3	24

#	Article	IF	CITATIONS
37	Efficient Optical Amplification in a Sandwich-Type Active-Passive Polymer Waveguide Containing Perylenediimides. ACS Photonics, 2017, 4, 114-120.	6.6	24
38	Influence of Blending Ratio and Polymer Matrix on the Lasing Properties of Perylenediimide Dyes. Journal of Physical Chemistry C, 2018, 122, 24896-24906.	3.1	23
39	Perylenediimides as more than just non-fullerene acceptors: versatile components in organic, hybrid and perovskite solar cells. Chemical Communications, 2020, 56, 3824-3838.	4.1	23
40	Memorized chiral arrangement of gemini surfactant assemblies in nanometric hybrid organic–silica helices. Chemical Communications, 2016, 52, 5800-5803.	4.1	21
41	Effect of structural modifications in the laser properties of polymer films doped with perylenebisimide derivatives. Synthetic Metals, 2009, 159, 2293-2295.	3.9	20
42	Induced circular dichroism of monoatomic anions: silica-assisted the transfer of chiral environment from molecular assembled nanohelices to halide ions. Chemical Communications, 2018, 54, 10244-10247.	4.1	20
43	Interface engineering in efficient vacuum deposited perovskite solar cells. Organic Electronics, 2016, 37, 396-401.	2.6	19
44	Supramolecular complex of a fused zinc phthalocyanine–zinc porphyrin dyad assembled by two imidazole-C ₆₀ units: ultrafast photoevents. Physical Chemistry Chemical Physics, 2018, 20, 7798-7807.	2.8	19
45	Excited‣tate Charge Transfer in Covalently Functionalized MoS ₂ with a Zinc Phthalocyanine Donor–Acceptor Hybrid. Angewandte Chemie, 2019, 131, 5768-5773.	2.0	19
46	Optically Active Polyoxometalateâ€Based Silica Nanohelices: Induced Chirality from Inorganic Nanohelices to Achiral POM Clusters. Chemistry - A European Journal, 2018, 24, 11344-11353.	3.3	18
47	Perylene-Monoimides: Singlet Fission Down-Conversion Competes with Up-Conversion by Geminate Triplet–Triplet Recombination. Journal of Physical Chemistry A, 2020, 124, 5727-5736.	2.5	17
48	Unveiling the Photoinduced Electronâ€Đonating Character of MoS ₂ in Covalently Linked Hybrids Featuring Perylenediimide. Angewandte Chemie - International Edition, 2021, 60, 9120-9126.	13.8	16
49	Axially Substituted Silicon Phthalocyanine as Electron Donor in a Dyad and Triad with Azafullerene as Electron Acceptor for Photoinduced Charge Separation. Chemistry - A European Journal, 2016, 22, 15137-15143.	3.3	15
50	Charge separation and charge recombination photophysical studies in a series of perylene–C ₆₀ linear and cyclic dyads. Physical Chemistry Chemical Physics, 2016, 18, 3598-3605.	2.8	15
51	Fluoride-mediated alkoxylation and alkylthio-functionalization of halogenated perylenediimides. Organic Chemistry Frontiers, 2017, 4, 2016-2021.	4.5	15
52	Water soluble fluorescent-magnetic perylenediimide-containing maghemite-nanoparticles for bimodal MRI/OI imaging. Journal of Inorganic Biochemistry, 2012, 117, 205-211.	3.5	13
53	Supramolecular Induction of Topological Chirality from Nanoscale Helical Silica Scaffolds to Achiral Molecular Chromophores. Journal of Physical Chemistry C, 2020, 124, 23839-23843.	3.1	13
54	Creation of a polymer backbone in lipid bilayer membrane-based nanotubes for morphological and microenvironmental stabilization. RSC Advances, 2014, 4, 33194-33197.	3.6	12

#	Article	IF	CITATIONS
55	Phthalocyanine–Gold Nanoparticle Hybrids: Modulating Quenching with a Silica Matrix Shell ChemPhysChem, 2016, 17, 1579-1585.	2.1	12
56	Chirality induction on non-chiral dye-linked polysilsesquioxane in nanohelical structures. Chemical Communications, 2020, 56, 7241-7244.	4.1	12
57	Synthesis and Photophysical Properties of Conjugated and Nonconjugated Phthalocyanine–Perylenediimide Systems. Journal of Physical Chemistry C, 2016, 120, 26508-26513.	3.1	11
58	Sequential, Ultrafast Energy Transfer and Electron Transfer in a Fused Zinc Phthalocyanineâ€freeâ€base Porphyrin ₆₀ Supramolecular Triad. ChemPhysChem, 2019, 20, 163-172.	2.1	11
59	Distance Matters: Effect of the Spacer Length on the Photophysical Properties of Multimodular Perylenediimide–Silicon Phthalocyanine–Fullerene Triads. Chemistry - A European Journal, 2020, 26, 4822-4832.	3.3	11
60	Direct alkylthio-functionalization of unsubstituted perylenediimides. Organic and Biomolecular Chemistry, 2016, 14, 9375-9383.	2.8	10
61	Easy and mild fluoride-mediated direct mono- and dialkoxylation of perylenediimides. Dyes and Pigments, 2016, 127, 9-17.	3.7	10
62	Purcell-enhancement of the radiative PL decay in perylenediimides by coupling with silver nanoparticles into waveguide modes. Applied Physics Letters, 2017, 111, .	3.3	9
63	Directly Linked Zinc Phthalocyanine–Perylenediimide Dyads and a Triad for Ultrafast Charge Separation. Chemistry - A European Journal, 2019, 25, 10123-10132.	3.3	9
64	Oligo(ethylene oxide) chains in fluorene bridge units of perylenediimide dimers as an efficient strategy for improving the photovoltaic performance in organic solar cells. Dyes and Pigments, 2019, 161, 188-196.	3.7	9
65	Silicaâ€Supported Phosphine–Gold Complexes as an Efficient Catalytic System for a Dearomative Spirocyclization. Chemistry - A European Journal, 2021, 27, 427-433.	3.3	9
66	Synthesis of bay-triaminosubstituted perylenediimides. Organic Chemistry Frontiers, 2018, 5, 1830-1834.	4.5	8
67	Diphenylphenoxy-Thiophene-PDI Dimers as Acceptors for OPV Applications with Open Circuit Voltage Approaching 1 Volt. Nanomaterials, 2018, 8, 211.	4.1	8
68	Direct amination and N-heteroarylation of perylenediimides. Organic Chemistry Frontiers, 2019, 6, 2488-2499.	4.5	8
69	Altering singlet fission pathways in perylene-dimers; perylene-diimide <i>versus</i> perylene-monoimide. Nanoscale, 2022, 14, 5194-5203.	5.6	8
70	Near perfect head-to-head selectivity on the supramolecular photocyclodimerisation of 2-anthracenecarboxylate with self-organised gemini surfactant bilayers. Chemical Communications, 2020, 56, 10058-10061.	4.1	7
71	Effect of Substituents at Imide Positions on the Laser Performance of 1,7-Bay-Substituted Perylenediimide Dyes. Journal of Physical Chemistry C, 2021, 125, 12277-12288.	3.1	7
72	Slow kinetic evolution of nanohelices based on gemini surfactant self-assemblies with various enantiomeric excess; chiral segregation towards a racemic mixture. Materials Chemistry Frontiers, 2021, 5, 3021-3028.	5.9	6

#	Article	IF	CITATIONS
73	Chirality induction to achiral molecules by silica oated chiral molecular assemblies. Chirality, 2021, 33, 494-505.	2.6	6
74	Lanthanide ion-doped silica nanohelix: a helical inorganic network acts as a chiral source for metal ions. Chemical Communications, 2021, 57, 4392-4395.	4.1	6
75	Diels–Alder reaction on perylenediimides: synthesis and theoretical study of core-expanded diimides. Organic Chemistry Frontiers, 2019, 6, 2860-2871.	4.5	5
76	Distanceâ€Dependent Electron Transfer Kinetics in Axially Connected Silicon Phthalocyanineâ€Fullerene Conjugates. ChemPhysChem, 2020, 21, 2254-2262.	2.1	5
77	Excited State Charge Separation in an Azobenzeneâ€Bridged Perylenediimide Dimer – Effect of Photochemical Transâ€Cis Isomerization. Chemistry - A European Journal, 2021, 27, 14996-15005.	3.3	5
78	Fabrication of Fluorescent One-dimensional-nanocomposites through One-pot Self-assembling Polymerization on Nano-helical Silica. Chemistry Letters, 2019, 48, 1088-1091.	1.3	4
79	Occurrence of excited state charge separation in a N-doped graphene–perylenediimide hybrid formed <i>via</i> â€~click' chemistry. Nanoscale Advances, 2019, 1, 4009-4015.	4.6	4
80	Emissionâ€Color Control in Polymer Films by Memorized Fluorescence Solvatochromism in a New Class of Totally Organic Fluorescent Nanogel Particles. Chemistry - A European Journal, 2019, 25, 10141-10148.	3.3	4
81	A zinc phthalocyanine–benzoperylenetriimide conjugate for solvent dependent ultrafast energy vs. electron transfer. Chemical Communications, 2019, 55, 14946-14949.	4.1	4
82	Substituents interplay in piperidinyl-perylenediimide as dopant-free hole-selective layer for perovskite solar cells fabrication. Emergent Materials, 2022, 5, 977-985.	5.7	4
83	Identification of the loss mechanisms in TiO2 and ZnO solar cells based on blue, piperidinyl-substituted, mono-anhydride perylene dyes. Electrochimica Acta, 2020, 355, 136638.	5.2	3
84	Quadrupolar Ultrafast Charge Transfer in Diaminoazobenzeneâ€Bridged Perylenediimide Triads. Chemistry - A European Journal, 2022, 28, .	3.3	2
85	Unveiling the Photoinduced Electronâ€Donating Character of MoS 2 in Covalently Linked Hybrids Featuring Perylenediimide. Angewandte Chemie, 2021, 133, 9202-9208.	2.0	1
86	Influence of substituents of Perylenebisimides on the surface energy and wettability: A systematic structure–property relationship analysis. Dyes and Pigments, 2022, 199, 110044.	3.7	1
87	Distanceâ€Dependent Electron Transfer Kinetics in Axially Connected Silicon Phthalocyanineâ€Fullerene Conjugates. ChemPhysChem, 2020, 21, 2232-2232.	2.1	0