Christina M Spengler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4596918/publications.pdf

Version: 2024-02-01

93 papers 3,318 citations

172386 29 h-index 55 g-index

97 all docs

97
docs citations

97 times ranked 3034 citing authors

#	Article	IF	CITATIONS
1	OUP accepted manuscript. European Journal of Preventive Cardiology, 2022, , .	0.8	O
2	Changes in Circulating Stem and Progenitor Cell Numbers Following Acute Exercise in Healthy Human Subjects: a Systematic Review and Meta-analysis. Stem Cell Reviews and Reports, 2021, 17, 1091-1120.	1.7	11
3	Enhanced Deep-Inspiration Breath Hold Superior to High-Frequency Percussive Ventilation for Respiratory Motion Mitigation: A Physiology-Driven, MRI-Guided Assessment Toward Optimized Lung Cancer Treatment With Proton Therapy. Frontiers in Oncology, 2021, 11, 621350.	1.3	12
4	Current limits for flowmeter resistance in metabolic carts can negatively affect exercise performance. Physiological Reports, 2021, 9, e14814.	0.7	1
5	Cardiorespiratory Responses to Constant and Varied-Load Interval Training Sessions. International Journal of Sports Physiology and Performance, 2021, 16, 1021-1028.	1.1	4
6	Acute exercise-induced glycocalyx shedding does not differ between exercise modalities, but is associated with total antioxidative capacity. Journal of Science and Medicine in Sport, 2021, 24, 689-695.	0.6	7
7	A Thermal Skin Model for Comparing Contact Skin Temperature Sensors and Assessing Measurement Errors. Sensors, 2021, 21, 4906.	2.1	2
8	MiRNA126 – RGS16 – CXCL12 Cascade as a Potential Mechanism of Acute Exercise-Induced Precursor Cell Mobilization. Frontiers in Physiology, 2021, 12, 780666.	1.3	1
9	Fatigue Monitoring Through Wearables: A State-of-the-Art Review. Frontiers in Physiology, 2021, 12, 790292.	1.3	29
10	A Single 60.000 IU Dose of Erythropoietin Does Not Improve Short-Term Aerobic Exercise Performance in Healthy Subjects: A Randomized, Double-Blind, Placebo-Controlled Crossover Trial. Frontiers in Physiology, 2020, 11, 537389.	1.3	6
11	Effect of electrical stimulation of receptive fields in people with lower limb amputation on variables of gait. IBRO Reports, 2020, 9, 78-84.	0.3	1
12	Acute Exercise-Induced Oxidative Stress Does Not Affect Immediate or Delayed Precursor Cell Mobilization in Healthy Young Males. Frontiers in Physiology, 2020, 11, 577540.	1.3	3
13	No Decrease in Blood Pressure After an Acute Bout of Intermittent Hyperpnea and Hypoxia in Prehypertensive Elderly. Frontiers in Physiology, 2020, 11, 556220.	1.3	2
14	Exercise-Induced Circulating Hematopoietic Stem and Progenitor Cells in Well-Trained Subjects. Frontiers in Physiology, 2020, 11, 308.	1.3	10
15	Acute Exercise in Hypobaric Hypoxia Attenuates Endothelial Shedding in Subjects Unacclimatized to High Altitudes. Frontiers in Physiology, 2020, 10, 1632.	1.3	2
16	Hypoxic-Inflammatory Responses under Acute Hypoxia: In Vitro Experiments and Prospective Observational Expedition Trial. International Journal of Molecular Sciences, 2020, 21, 1034.	1.8	22
17	No Evidence That Hyperpnea-Based Respiratory Muscle Training Affects Indexes of Cardiovascular Health in Young Healthy Adults. Frontiers in Physiology, 2020, 11, 530218.	1.3	4
18	Acute Exercise-Induced Circulating Haematopoietic Stem and Progenitor Cells in Cardiac Patients — A Case Series. Heart Lung and Circulation, 2019, 28, e54-e58.	0.2	2

#	Article	IF	CITATIONS
19	Similar Airway Function after Volitional Hyperpnea in Mild-Moderate Asthmatics and Healthy Controls. Respiration, 2019, 97, 558-568.	1.2	2
20	ERS statement on respiratory muscle testing at rest and during exercise. European Respiratory Journal, 2019, 53, 1801214.	3.1	379
21	Circulating adult stem and progenitor cell numbersâ€"can results be trusted?. Stem Cell Research and Therapy, 2019, 10, 305.	2.4	12
22	Wearable Sensors in Ambulatory Individuals With a Spinal Cord Injury: From Energy Expenditure Estimation to Activity Recommendations. Frontiers in Neurology, 2019, 10, 1092.	1.1	20
23	Effects of Sprint-Interval and Endurance Respiratory Muscle Training Regimens. Medicine and Science in Sports and Exercise, 2019, 51, 361-371.	0.2	11
24	Effects of Evening Exercise on Sleep in Healthy Participants: A Systematic Review and Meta-Analysis. Sports Medicine, 2019, 49, 269-287.	3.1	108
25	Letter to the Editor: Circulating Adult Stem and Progenitor Cells After Roux-en-Y Gastric Bypass Surgery in Myotonic Dystrophy. Obesity Surgery, 2019, 29, 311-315.	1.1	2
26	Multi-Segment Indexes of Arterial Stiffness Show Lower Repeatability Than Carotid–Femoral Pulse Wave Velocity or Systolic Blood Pressure. American Journal of Hypertension, 2019, 32, 245-248.	1.0	2
27	Myocardial infarction does not affect circulating haematopoietic stem and progenitor cell selfâ€renewal ability in a rat model. Experimental Physiology, 2018, 103, 1-8.	0.9	2
28	Resting energy expenditure after Roux-en Y gastric bypass surgery. Surgery for Obesity and Related Diseases, 2018, 14, 191-199.	1.0	23
29	Changes of hemodynamic and cerebral oxygenation after exercise in normobaric and hypobaric hypoxia: associations with acute mountain sickness. Annals of Occupational and Environmental Medicine, 2018, 30, 66.	0.3	13
30	Estimation of Energy Expenditure in Wheelchair-Bound Spinal Cord Injured Individuals Using Inertial Measurement Units. Frontiers in Neurology, 2018, 9, 478.	1.1	15
31	Validity of contact skin temperature sensors under different environmental conditions with and without fabric coverage: characterisation and correction. International Journal of Biometeorology, 2018, 62, 1861-1872.	1.3	5
32	Skin Temperature Measurement Using Contact Thermometry: A Systematic Review of Setup Variables and Their Effects on Measured Values. Frontiers in Physiology, 2018, 9, 29.	1.3	54
33	Contact skin temperature measurements and associated effects of obstructing local sweat evaporation during mild exercise-induced heat stress. Physiological Measurement, 2018, 39, 075003.	1.2	12
34	Type 2 Diabetes is Associated with Lower Cardiorespiratory Fitness Independent of Pulmonary Function in Severe Obesity. Experimental and Clinical Endocrinology and Diabetes, 2017, 125, 301-306.	0.6	9
35	Altered skeletal muscle (mitochondrial) properties in patients with mitochondrial DNA single deletion myopathy. Orphanet Journal of Rare Diseases, 2016, 11, 105.	1.2	20
36	Effect of Regular Yoga Practice on Respiratory Regulation and Exercise Performance. PLoS ONE, 2016, 11, e0153159.	1.1	13

#	Article	IF	Citations
37	Pre-Exercise Hyperpnea Attenuates Exercise-Induced Bronchoconstriction Without Affecting Performance. PLoS ONE, 2016, 11, e0167318.	1.1	5
38	Comprehensive assessment of physical functioning in bariatric surgery candidates compared with subjects without obesity. Surgery for Obesity and Related Diseases, 2016, 12, 642-650.	1.0	10
39	Effects of respiratory warm-up exercises on exercise-induced bronchoconstriction. , 2016, , .		0
40	Repetitive, intense hyperpnea to reduce bronchial reactivity in asthmatics – A pilot study. , 2016, , .		1
41	Acute Effects of a Respiratory Sprint-Interval Session on Muscle Contractility. Medicine and Science in Sports and Exercise, 2015, 47, 1979-1987.	0.2	15
42	Aspects of Respiratory Muscle Fatigue in a Mountain Ultramarathon Race. Medicine and Science in Sports and Exercise, 2015, 47, 519-527.	0.2	28
43	Locomotor and diaphragm muscle fatigue in endurance athletes performing time-trials of different durations. European Journal of Applied Physiology, 2014, 114, 1619-1633.	1.2	17
44	Physical workload, trapezius muscle activity, and neck pain in nurses' night and day shifts: A physiological evaluation. Applied Ergonomics, 2014, 45, 741-746.	1.7	30
45	Inspiratory Muscle Fatigue in a Mountain Ultra-Marathon Race. Medicine and Science in Sports and Exercise, 2014, 46, 9.	0.2	0
46	Effects of Exercise Training on Airway Hyperreactivity in Asthma: A Systematic Review and Meta-Analysis. Sports Medicine, 2013, 43, 1157-1170.	3.1	148
47	Compartmental chest wall volume changes during volitional hyperpnoea with constant tidal volume in healthy individuals. Respiratory Physiology and Neurobiology, 2013, 185, 410-415.	0.7	6
48	Effect of inspiratory muscle fatigue on exercise performance taking into account the fatigueâ€induced excess respiratory drive. Experimental Physiology, 2013, 98, 1705-1717.	0.9	29
49	Minimally invasive versus open oesophagectomy for oesophageal cancer. Lancet, The, 2012, 380, 885.	6.3	4
50	Effect of Respiratory Muscle Training on Exercise Performance in Healthy Individuals. Sports Medicine, 2012, 42, 707-724.	3.1	254
51	Maximal cardiac output during arm exercise in the sitting position after cervical spinal cord injury. Journal of Rehabilitation Medicine, 2012, 44, 131-136.	0.8	33
52	Effect of Respiratory Muscle Training on Exercise Performance in Healthy Individuals. Sports Medicine, 2012, , $1.$	3.1	13
53	Respiratory Muscles, Exercise Performance, and Health in Overweight and Obese Subjects. Medicine and Science in Sports and Exercise, 2011, 43, 714-727.	0.2	23
54	Reliability of non-invasive cardiac output measurement in individuals with tetraplegia. Spinal Cord, 2011, 49, 665-671.	0.9	3

#	Article	IF	Citations
55	Spinal opioid receptor-sensitive muscle afferents contribute to the fatigue-induced increase in intracortical inhibition in healthy humans. Experimental Physiology, 2011, 96, 505-517.	0.9	62
56	Chest wall volume changes during inspiratory loaded breathing. Respiratory Physiology and Neurobiology, 2011, 175, 130-139.	0.7	15
57	Biometric approximation of diaphragmatic contractility during sustained hyperpnea. Respiratory Physiology and Neurobiology, 2011, 176, 90-97.	0.7	8
58	Compartmental chest wall volume changes during volitional normocapnic hyperpnoea. Respiratory Physiology and Neurobiology, 2011, 177, 294-300.	0.7	10
59	Effects of different respiratory muscle training regimes on fatigue-related variables during volitional hyperpnoea. Respiratory Physiology and Neurobiology, 2009, 169, 282-290.	0.7	46
60	Development of respiratory muscle contractile fatigue in the course of hyperpnoea. Respiratory Physiology and Neurobiology, 2008, 164, 366-372.	0.7	32
61	Respiratory Control, Respiratory Sensations and Cycling Endurance After Respiratory Muscle Endurance Training. Advances in Experimental Medicine and Biology, 2008, 605, 239-244.	0.8	9
62	Effect of respiratory muscle endurance training on respiratory sensations, respiratory control and exercise performance. Respiratory Physiology and Neurobiology, 2008, 161, 16-22.	0.7	41
63	Patients with acute spinal cord injury benefit from normocapnic hyperpnoea training. Acta Dermato-Venereologica, 2008, 40, 119-125.	0.6	33
64	Increased fatigue resistance of respiratory muscles during exercise after respiratory muscle endurance training. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2007, 292, R1246-R1253.	0.9	108
65	The effect of respiratory muscle endurance training in patients with myasthenia gravis. Neuromuscular Disorders, 2007, 17, 385-391.	0.3	41
66	Expiratory muscle fatigue impairs exercise performance. European Journal of Applied Physiology, 2007, 101, 225-232.	1.2	42
67	Influence of diaphragm and rib cage muscle fatigue on breathing during endurance exercise. Respiratory Physiology and Neurobiology, 2006, 154, 431-442.	0.7	45
68	Impaired abdominal muscle contractility after high-intensity exhaustive exercise assessed by magnetic stimulation. Muscle and Nerve, 2006, 34, 423-430.	1.0	36
69	OPTIMAL INTENSITY FOR RESPIRATORY MUSCLE ENDURANCE TRAINING IN PATIENTS WITH SPINAL CORD INJURY. Journal of Rehabilitation Medicine, 2006, 38, 381-386.	0.8	19
70	Changes in Cerebral Glucose Metabolism after an Expedition to High Altitudes. High Altitude Medicine and Biology, 2006, 7, 28-38.	0.5	7
71	Effect of Respiratory Muscle Endurance Training in Patients With COPD Undergoing Pulmonary Rehabilitatio. Chest, 2005, 128, 1216-1224.	0.4	56
72	Task failure from inspiratory resistive loaded breathing: a role for inspiratory muscle fatigue?. European Journal of Applied Physiology, 2003, 90, 405-410.	1.2	27

#	Article	IF	CITATIONS
73	Hyperpnea training attenuates peripheral chemosensitivity and improves cycling endurance. Journal of Experimental Biology, 2002, 205, 3937-3943.	0.8	54
74	Hyperpnea training attenuates peripheral chemosensitivity and improves cycling endurance. Journal of Experimental Biology, 2002, 205, 3937-43.	0.8	42
75	Explained and Unexplained Variability of CO2-Sensitivity in Humans. Advances in Experimental Medicine and Biology, 2001, 499, 483-488.	0.8	4
76	Respiratory muscle endurance training in humans increases cycling endurance without affecting blood gas concentrations. European Journal of Applied Physiology, 2001, 84, 582-586.	1.2	76
77	Respiratory muscle training increases cycling endurance without affecting cardiovascular responses to exercise. European Journal of Applied Physiology, 2001, 85, 233-239.	1.2	110
78	Chemoreceptive mechanisms elucidated by studies of congenital central hypoventilation syndrome. Respiration Physiology, 2001, 129, 247-255.	2.8	56
79	An endogenous circadian rhythm of respiratory control in humans. Journal of Physiology, 2000, 526, 683-694.	1.3	139
80	Breathing pattern and exercise endurance time after exhausting cycling or breathing. European Journal of Applied Physiology, 2000, 81, 368-374.	1.2	16
81	Breathless Legs? Consider Training Your Respiration. Physiology, 2000, 15, 101-105.	1.6	10
82	Respiratory Muscle Endurance Training in Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 1709-1714.	2.5	142
83	Influence of endurance exercise on respiratory muscle performance. Medicine and Science in Sports and Exercise, 2000, 32, 2052-2058.	0.2	8
84	Sleep Deprivation Per Se Does Not Decrease the Hypercapnic Ventilatory Response in Humans. American Journal of Respiratory and Critical Care Medicine, 2000, 161, 1124-1128.	2.5	58
85	Endogenous Circadian Rhythm of Pulmonary Function in Healthy Humans. American Journal of Respiratory and Critical Care Medicine, 2000, 162, 1038-1046.	2.5	129
86	Decreased exercise blood lactate concentrations after respiratory endurance training in humans. European Journal of Applied Physiology, 1999, 79, 299-305.	1.2	112
87	Noninvasive measurement of respiratory muscle performance after exhaustive endurance exercise. European Respiratory Journal, 1999, 14, 264-269.	3.1	29
88	Respiratory sensations during heavy exercise in subjects without respiratory chemosensitivity. Respiration Physiology, 1998, 114, 65-74.	2.8	29
89	Self-Control and External Control of Mechanical Ventilation Give Equal Air Hunger Relief. American Journal of Respiratory and Critical Care Medicine, 1998, 157, 415-420.	2.5	37
90	Modulation of the ventilatory increase at the onset of exercise in humans. Respiration Physiology, 1997, 109, 219-229.	2.8	23

#	Article	IF	CITATIONS
91	The Effect of Breathing Pattern During Respiratory Training on Cycling Endurance., 1996,, 315-319.		1
92	The role of central command in ventilatory control during static exercise. European Journal of Applied Physiology and Occupational Physiology, 1994, 68, 162-169.	1.2	7
93	The respiratory system as an exercise limiting factor in normal trained subjects. European Journal of Applied Physiology and Occupational Physiology, 1992, 65, 347-353.	1.2	132