
Heiko Lickert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/4596683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CellRank for directed single-cell fate mapping. Nature Methods, 2022, 19, 159-170.	9.0	286
2	Pharmacological Aspects of Clinically Approved Gene Therapy Drugs and Products. , 2022, , .		0
3	New insights into β-cell failure, regeneration and replacement. Nature Reviews Endocrinology, 2022, 18, 79-80.	4.3	4
4	Awaking sleeping islets for a cure ofÂdiabetes. Med, 2022, 3, 279-280.	2.2	0
5	Non-canonical Wnt/PCP signalling regulates intestinal stem cell lineage priming towards enteroendocrine and Paneth cell fates. Nature Cell Biology, 2021, 23, 23-31.	4.6	46
6	Inceptor counteracts insulin signalling in β-cells to control glycaemia. Nature, 2021, 590, 326-331.	13.7	55
7	Generation of a heterozygous C-peptide-mCherry reporter human iPSC line (HMGUi001-A-8). Stem Cell Research, 2021, 50, 102126.	0.3	3
8	Pharmacological Targeting of Endoplasmic Reticulum Stress in Pancreatic Beta Cells. Trends in Pharmacological Sciences, 2021, 42, 85-95.	4.0	25
9	SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nature Metabolism, 2021, 3, 149-165.	5.1	378
10	Generation of a Novel Nkx6-1 Venus Fusion Reporter Mouse Line. International Journal of Molecular Sciences, 2021, 22, 3434.	1.8	0
11	Asc-1 regulates white versus beige adipocyte fate in a subcutaneous stromal cell population. Nature Communications, 2021, 12, 1588.	5.8	17
12	Anatomical and cellular heterogeneity in the mouse oviduct—its potential roles in reproduction and preimplantation development. Biology of Reproduction, 2021, 104, 1249-1261.	1.2	20
13	The glucose-dependent insulinotropic polypeptide (GIP) regulates body weight and food intake via CNS-GIPR signaling. Cell Metabolism, 2021, 33, 833-844.e5.	7.2	128
14	Engineering Gene Therapy: Advances and Barriers. Advanced Therapeutics, 2021, 4, 2100040.	1.6	23
15	Epithelial cell plasticity drives endoderm formation during gastrulation. Nature Cell Biology, 2021, 23, 692-703.	4.6	41
16	Residual pluripotency is required for inductive germ cell segregation. EMBO Reports, 2021, 22, e52553.	2.0	5
17	Single-cell-resolved differentiation of human induced pluripotent stem cells into pancreatic duct-like organoids on a microwell chip. Nature Biomedical Engineering, 2021, 5, 897-913.	11.6	61
18	CD81 marks immature and dedifferentiated pancreatic β-cells. Molecular Metabolism, 2021, 49, 101188.	3.0	26

Heiko Lickert

#	Article	IF	CITATIONS
19	Increasing Gene Editing Efficiency for CRISPR-Cas9 by Small RNAs in Pluripotent Stem Cells. CRISPR Journal, 2021, 4, 491-501.	1.4	7
20	Engineering islets from stem cells for advanced therapies of diabetes. Nature Reviews Drug Discovery, 2021, 20, 920-940.	21.5	61
21	Sequential in vivo labeling of insulin secretory granule pools in <i>INS</i> - <i>SNAP</i> transgenic pigs. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	7
22	Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nature Metabolism, 2021, 3, 1202-1216.	5.1	47
23	Engineering Gene Therapy: Advances and Barriers (Adv. Therap. 9/2021). Advanced Therapeutics, 2021, 4, 2170023.	1.6	1
24	A point mutation in the Pdia6 gene results in loss of pancreatic Î ² -cell identity causing overt diabetes. Molecular Metabolism, 2021, 54, 101334.	3.0	3
25	Vertical sleeve gastrectomy triggers fast β-cell recovery upon overt diabetes. Molecular Metabolism, 2021, 54, 101330.	3.0	10
26	PDX1LOW MAFALOW \hat{l}^2 -cells contribute to islet function and insulin release. Nature Communications, 2021, 12, 674.	5.8	51
27	Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice. Life Science Alliance, 2021, 4, e202000924.	1.3	14
28	Charting the next century of insulin replacement with cell and gene therapies. Med, 2021, 2, 1138-1162.	2.2	3
29	Automated optimization of endoderm differentiation on chip. Lab on A Chip, 2021, 21, 4685-4695.	3.1	6
30	Synaptotagmin-13 Is a Neuroendocrine Marker in Brain, Intestine and Pancreas. International Journal of Molecular Sciences, 2021, 22, 12526.	1.8	4
31	scPower accelerates and optimizes the design of multi-sample single cell transcriptomic studies. Nature Communications, 2021, 12, 6625.	5.8	38
32	Pharmacological Targeting of the Actin Cytoskeleton to Drive Endocrinogenesis. Trends in Pharmacological Sciences, 2020, 41, 384-386.	4.0	1
33	Generation of a human iPSC line harboring a biallelic large deletion at the INK4 locus (HMGUi001-A-5). Stem Cell Research, 2020, 47, 101927.	0.3	3
34	Generation of an INSULIN-H2B-Cherry reporter human iPSC line. Stem Cell Research, 2020, 45, 101797.	0.3	6
35	Generation of a homozygous ARX nuclear CFP (ARX) reporter human iPSC line (HMGUi001-A-4). Stem Cell Research, 2020, 46, 101874.	0.3	1
36	Targeted pharmacological therapy restores β-cell function for diabetes remission. Nature Metabolism, 2020, 2, 192-209.	5.1	93

#	Article	IF	CITATIONS
37	Epithelial Planar Bipolarity Emerges from Notch-Mediated Asymmetric Inhibition of Emx2. Current Biology, 2020, 30, 1142-1151.e6.	1.8	25
38	Generation of pancreatic β cells from CD177+ anterior definitive endoderm. Nature Biotechnology, 2020, 38, 1061-1072.	9.4	68
39	DLL1- and DLL4-Mediated Notch Signaling Is Essential for Adult Pancreatic Islet Homeostasis. Diabetes, 2020, 69, 915-926.	0.3	24
40	Generation of a human induced pluripotent stem cell line (HMGUi002-A) from a healthy male individual. Stem Cell Research, 2019, 39, 101531.	0.3	1
41	Wnt signaling: implications in endoderm development and pancreas organogenesis. Current Opinion in Cell Biology, 2019, 61, 48-55.	2.6	30
42	Pre-marked chromatin and transcription factor co-binding shape the pioneering activity of Foxa2. Nucleic Acids Research, 2019, 47, 9069-9086.	6.5	65
43	Concepts and limitations for learning developmental trajectories from single cell genomics. Development (Cambridge), 2019, 146, .	1.2	177
44	β-Cell Maturation and Identity in Health and Disease. International Journal of Molecular Sciences, 2019, 20, 5417.	1.8	60
45	A map of Î ² -cell differentiation pathways supports cell therapies for diabetes. Nature, 2019, 569, 342-343.	13.7	8
46	Establishment of a high-resolution 3D modeling system for studying pancreatic epithelial cell biology inÂvitro. Molecular Metabolism, 2019, 30, 16-29.	3.0	22
47	Development and Clinical Translation of Approved Gene Therapy Products for Genetic Disorders. Frontiers in Genetics, 2019, 10, 868.	1.1	168
48	Massive single-cell mRNA profiling reveals a detailed roadmap for pancreatic endocrinogenesis. Development (Cambridge), 2019, 146, .	1.2	145
49	Sorting Out Fate Determination. Developmental Cell, 2019, 49, 1-3.	3.1	15
50	Point mutations in the PDX1 transactivation domain impair human β-cell development and function. Molecular Metabolism, 2019, 24, 80-97.	3.0	58
51	Inferring population dynamics from single-cell RNA-sequencing time series data. Nature Biotechnology, 2019, 37, 461-468.	9.4	85
52	Cell makeover for diabetes therapy. Nature Metabolism, 2019, 1, 312-313.	5.1	2
53	Dual embryonic origin of the mammalian enteric nervous system. Developmental Biology, 2019, 445, 256-270.	0.9	23
54	EU-OPENSCREEN: A Novel Collaborative Approach to Facilitate Chemical Biology. SLAS Discovery, 2019, 24, 398-413.	1.4	12

4

#	Article	IF	CITATIONS
55	Modelling the endocrine pancreas in health and disease. Nature Reviews Endocrinology, 2019, 15, 155-171.	4.3	71
56	Maintenance of hematopoietic stem and progenitor cells in fetal intra-aortic hematopoietic clusters by the Sox17-Notch1-Hes1 axis. Experimental Cell Research, 2018, 365, 145-155.	1.2	8
57	Neural tube closure depends on expression of Grainyhead-like 3 in multiple tissues. Developmental Biology, 2018, 435, 130-137.	0.9	24
58	Genome-wide analysis of PDX1 target genes in human pancreatic progenitors. Molecular Metabolism, 2018, 9, 57-68.	3.0	67
59	Animal models of obesity and diabetes mellitus. Nature Reviews Endocrinology, 2018, 14, 140-162.	4.3	563
60	Neurog3-dependent pancreas dysgenesis causes ectopic pancreas in Hes1 mutants. Development (Cambridge), 2018, 145, .	1.2	15
61	Direct Substrate Delivery Into Mitochondrial Fission–Deficient Pancreatic Islets Rescues Insulin Secretion. Diabetes, 2017, 66, 1247-1257.	0.3	28
62	Foxa2 and Pdx1 cooperatively regulate postnatal maturation of pancreatic β-cells. Molecular Metabolism, 2017, 6, 524-534.	3.0	65
63	A novel Creâ€inducible knockâ€in ARL13Bâ€ŧRFP fusion cilium reporter. Genesis, 2017, 55, e23073.	0.8	8
64	A high-content small molecule screen identifies novel inducers of definitive endoderm. Molecular Metabolism, 2017, 6, 640-650.	3.0	32
65	Islet biology. Molecular Metabolism, 2017, 6, vi.	3.0	Ο
66	Systematic single-cell analysis provides new insights into heterogeneity and plasticity of the pancreas. Molecular Metabolism, 2017, 6, 974-990.	3.0	95
67	Engineering Skin with Skinny Genes. Cell Stem Cell, 2017, 21, 153-155.	5.2	Ο
68	Cellular and molecular mechanisms coordinating pancreas development. Development (Cambridge), 2017, 144, 2873-2888.	1.2	129
69	Identification of proliferative and mature β-cells in the islets of Langerhans. Nature, 2016, 535, 430-434.	13.7	279
70	Generation of a human induced pluripotent stem cell (iPSC) line from a patient carrying a P33T mutation in the PDX1 gene. Stem Cell Research, 2016, 17, 273-276.	0.3	12
71	Generation of a human induced pluripotent stem cell (iPSC) line from a patient with family history of diabetes carrying a C18R mutation in the PDX1 gene. Stem Cell Research, 2016, 17, 292-295.	0.3	12
72	Impact of islet architecture on β-cell heterogeneity, plasticity and function. Nature Reviews Endocrinology, 2016, 12, 695-709.	4.3	150

#	Article	IF	CITATIONS
73	Targeting insulin-producing beta cells for regenerative therapy. Diabetologia, 2016, 59, 1838-1842.	2.9	4
74	Early myeloid lineage choice is not initiated by random PU.1 to GATA1 protein ratios. Nature, 2016, 535, 299-302.	13.7	180
75	The global gene expression profile of the secondary transition during pancreatic development. Mechanisms of Development, 2016, 139, 51-64.	1.7	32
76	Pitchfork and Gprasp2 Target Smoothened to the Primary Cilium for Hedgehog Pathway Activation. PLoS ONE, 2016, 11, e0149477.	1.1	21
77	Homology arms of targeting vectors for gene insertions and CRISPR/Cas9 technology: size does not matter; quality control of targeted clones does. Cellular and Molecular Biology Letters, 2015, 20, 773-87.	2.7	5
78	Beyond association: A functional role for Tcf7l2 in β-cell development. Molecular Metabolism, 2015, 4, 365-366.	3.0	13
79	Repurposing an Osteoporosis Drug for β Cell Regeneration in Diabetic Patients. Cell Metabolism, 2015, 22, 58-59.	7.2	6
80	SimiRa: A tool to identify coregulation between microRNAs and RNA-binding proteins. RNA Biology, 2015, 12, 998-1009.	1.5	14
81	Endoderm Generates Endothelial Cells during Liver Development. Stem Cell Reports, 2014, 3, 556-565.	2.3	46
82	Islet cell plasticity and regeneration. Molecular Metabolism, 2014, 3, 268-274.	3.0	48
83	Flattop regulates basal body docking and positioning in mono- and multiciliated cells. ELife, 2014, 3, .	2.8	47
84	Betatrophin Fuels Î ² Cell Proliferation: First Step toward Regenerative Therapy?. Cell Metabolism, 2013, 18, 5-6.	7.2	43
85	Wnt/β-catenin signalling regulates <i>Sox17</i> expression and is essential for organizer and endoderm formation in the mouse. Development (Cambridge), 2013, 140, 3128-3138.	1.2	84
86	Biallelic Expression of Nanog Protein in Mouse Embryonic Stem Cells. Cell Stem Cell, 2013, 13, 12-13.	5.2	86
87	Foxa2â€venus fusion reporter mouse line allows liveâ€cell analysis of endodermâ€derived organ formation. Genesis, 2013, 51, 596-604.	0.8	25
88	The human transcriptome is enriched for miRNA-binding sites located in cooperativity-permitting distance. RNA Biology, 2013, 10, 1125-1135.	1.5	38
89	Evolution of the Discs large gene family provides new insights into the establishment of apical epithelial polarity and the etiology of mental retardation. Communicative and Integrative Biology, 2012, 5, 287-290.	0.6	4
90	<i>Mind bomb 1</i> is required for pancreatic β-cell formation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7356-7361.	3.3	74

#	Article	IF	CITATIONS
91	FltpT2AiCre: A new knock-in mouse line for conditional gene targeting in distinct mono- and multiciliated tissues. Differentiation, 2012, 83, S105-S113.	1.0	19
92	Understanding Pancreas Development for β-Cell Repair and Replacement Therapies. Current Diabetes Reports, 2012, 12, 481-489.	1.7	7
93	Novel biomarkers for preâ€diabetes identified by metabolomics. Molecular Systems Biology, 2012, 8, 615.	3.2	605
94	Lineage tracing of the endoderm during oral development. Developmental Dynamics, 2012, 241, 1183-1191.	0.8	95
95	The Sox17â€mCherry fusion mouse line allows visualization of endoderm and vascular endothelial development. Genesis, 2012, 50, 496-505.	0.8	37
96	Dlg3 Trafficking and Apical Tight Junction Formation Is Regulated by Nedd4 and Nedd4-2 E3ÂUbiquitin Ligases. Developmental Cell, 2011, 21, 479-491.	3.1	48
97	Sprouty genes are essential for the normal development of epibranchial ganglia in the mouse embryo. Developmental Biology, 2011, 358, 147-155.	0.9	16
98	Induction of MesP1 by Brachyury(T) generates the common multipotent cardiovascular stem cell. Cardiovascular Research, 2011, 92, 115-122.	1.8	66
99	Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature, 2010, 467, 59-63.	13.7	189
100	Phenotypic annotation of the mouse X chromosome. Genome Research, 2010, 20, 1154-1164.	2.4	75
101	Pitchfork Regulates Primary Cilia Disassembly and Left-Right Asymmetry. Developmental Cell, 2010, 19, 66-77.	3.1	133
102	Foxa2 regulates polarity and epithelialization in the endoderm germ layer of the mouse embryo. Development (Cambridge), 2009, 136, 1029-1038.	1.2	180
103	Sox17â€2Aâ€iCre: A knockâ€in mouse line expressing Cre recombinase in endoderm and vascular endothelial cells. Genesis, 2009, 47, 603-610.	0.8	56
104	A mouse line expressing Foxa2â€driven Cre recombinase in node, notochord, floorplate, and endoderm. Genesis, 2008, 46, 515-522.	0.8	38
105	Microarray analysis of Foxa2 mutant mouse embryos reveals novel gene expression and inductive roles for the gastrula organizer and its derivatives. BMC Genomics, 2008, 9, 511.	1.2	76
106	Genetic ablation of FLRT3 reveals a novel morphogenetic function for the anterior visceral endoderm in suppressing mesoderm differentiation. Genes and Development, 2008, 22, 3349-3362.	2.7	54
107	Baf60c is a nuclear Notch signaling component required for the establishment of left–right asymmetry. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 846-851.	3.3	108
108	IFITM/Mil/Fragilis Family Proteins IFITM1 and IFITM3 Play Distinct Roles in Mouse Primordial Germ Cell Homing and Repulsion. Developmental Cell, 2005, 9, 745-756.	3.1	189

#	Article	IF	CITATIONS
109	The mouse homeobox gene Not is required for caudal notochord development and affected by the truncate mutation. Genes and Development, 2004, 18, 1725-1736.	2.7	84
110	Baf60c is essential for function of BAF chromatin remodelling complexes in heart development. Nature, 2004, 432, 107-112.	13.7	478
111	Foxh1 Is Essential for Development of the Anterior Heart Field. Developmental Cell, 2004, 7, 331-345.	3.1	173
112	Transgenic RNA interference in ES cell–derived embryos recapitulates a genetic null phenotype. Nature Biotechnology, 2003, 21, 559-561.	9.4	276
113	Reptin and Pontin Antagonistically Regulate Heart Growth in Zebrafish Embryos. Cell, 2002, 111, 661-672.	13.5	200
114	Formation of Multiple Hearts in Mice following Deletion of Î ² -catenin in the Embryonic Endoderm. Developmental Cell, 2002, 3, 171-181.	3.1	252
115	Expression patterns of Wnt genes in mouse gut development. Mechanisms of Development, 2001, 105, 181-184.	1.7	94
116	Casein Kinase II Phosphorylation of E-cadherin Increases E-cadherin/ \hat{l}^2 -Catenin Interaction and Strengthens Cell-Cell Adhesion. Journal of Biological Chemistry, 2000, 275, 5090-5095.	1.6	179
117	The Disruption of Adherens Junctions Is Associated with a Decrease of E-Cadherin Phosphorylation by Protein Kinase CK2. Experimental Cell Research, 2000, 257, 255-264.	1.2	64
118	Modification of the E-cadherin-Catenin Complex in Mitotic Madin-Darby Canine Kidney Epithelial Cells. Journal of Biological Chemistry, 1998, 273, 28314-28321.	1.6	44