Anil Kumar Dasanna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/459640/publications.pdf

Version: 2024-02-01

933447 940533 25 299 10 16 citations h-index g-index papers 31 31 31 308 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Erythrocyte Sedimentation: Collapse of a High-Volume-Fraction Soft-Particle Gel. Physical Review Letters, 2022, 128, 088101.	7.8	12
2	Erythrocyte sedimentation: Effect of aggregation energy on gel structure during collapse. Physical Review E, 2022, 105, 024610.	2.1	11
3	Acanthocyte Sedimentation Rate as a Diagnostic Biomarker for Neuroacanthocytosis Syndromes: Experimental Evidence and Physical Justification. Cells, 2021, 10, 788.	4.1	18
4	Importance of Viscosity Contrast for the Motion of Erythrocytes in Microcapillaries. Frontiers in Physics, 2021, 9, .	2.1	11
5	The Erythrocyte Sedimentation Rate and Its Relation to Cell Shape and Rigidity of Red Blood Cells from Chorea-Acanthocytosis Patients in an Off-Label Treatment with Dasatinib. Biomolecules, 2021, 11, 727.	4.0	21
6	Effect of malaria parasite shape on its alignment at erythrocyte membrane. ELife, 2021, 10, .	6.0	3
7	Functionalized supported membranes for quantifying adhesion of P.Âfalciparum-infected erythrocytes. Biophysical Journal, 2021, 120, 3315-3328.	0.5	9
8	Flow-Induced Self-Assembly of Spider Silk from Multi-Scale Simulations. Biophysical Journal, 2020, 118, 479a.	0.5	0
9	Stability of heterogeneous parallel-bond adhesion clusters under load. Physical Review Research, 2020, 2, .	3.6	3
10	Stochastic bond dynamics facilitates alignment of malaria parasite at erythrocyte membrane upon invasion. ELife, 2020, 9, .	6.0	7
11	Multiscale Modeling of Malaria-Infected Red Blood Cells. , 2020, , 2625-2648.		1
12	Importance of Erythrocyte Deformability for the Alignment of Malaria Parasite upon Invasion. Biophysical Journal, 2019, 117, 1202-1214.	0.5	21
13	State diagram for wall adhesion of red blood cells in shear flow: from crawling to flipping. Soft Matter, 2019, 15, 5511-5520.	2.7	8
14	Adhesion-based sorting of blood cells: an adhesive dynamics simulation study. Soft Matter, 2018, 14, 9061-9070.	2.7	6
15	The sickle cell trait affects contact dynamics and endothelial cell activation in Plasmodium falciparum-infected erythrocytes. Communications Biology, 2018, 1, 211.	4.4	23
16	Multiscale Modeling of Malaria-Infected Red Blood Cells. , 2018, , 1-24.		2
17	Rolling Adhesion of Schizont Stage Malaria-Infected Red Blood Cells in Shear Flow. Biophysical Journal, 2017, 112, 1908-1919.	0.5	22
18	The Role of Cell Adhesion in the Malaria Life Cycle: From Gliding Sporozoites to Rolling Adhesion of Infected Red Blood Cells. Biophysical Journal, 2017, 112, 330a.	0.5	0

#	Article	IF	CITATIONS
19	Towards Simulating Large-Scale Self-Assembly of Proteins under Flow. Biophysical Journal, 2017, 112, 592a-593a.	0.5	O
20	Rolling Adhesion of Malaria-Infected Red Blood Cells. Biophysical Journal, 2017, 112, 126a.	0.5	1
21	Differential time-dependent volumetric and surface area changes and delayed induction of new permeation pathways inP. falciparum-infected hemoglobinopathic erythrocytes. Cellular Microbiology, 2017, 19, e12650.	2.1	38
22	Modeling cytoadhesion of Plasmodium falciparum―infected erythrocytes and leukocytes—common principles and distinctive features. FEBS Letters, 2016, 590, 1955-1971.	2.8	33
23	Slow closure of denaturation bubbles in DNA: Twist matters. Physical Review E, 2013, 87, 052703.	2.1	18
24	Strand diffusion-limited closure of denaturation bubbles in DNA. Europhysics Letters, 2012, 98, 38002.	2.0	13
25	Multifractal analysis of HIV-1 genomes. Molecular Phylogenetics and Evolution, 2012, 62, 756-763.	2.7	15